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on-line identification of labeled cells and vessels is a rate-limiting step
in scanning microscopy. We use supervised learning to formulate an
algorithm that rapidly and automatically tags fluorescently labeled
somata in full-field images of cortex and constructs an optimized scan
path through these cells. A single classifier works across multiple
subjects, regions of the cortex of similar depth, and different magni-
fication and contrast levels without the need to retrain the algorithm.
Retraining only has to be performed when the morphological proper-
ties of the cells change significantly. In conjunction with two-photon
laser scanning microscopy and bulk-labeling of cells in layers 2/3 of
rat parietal cortex with a calcium indicator, we can automatically
identify �50 cells within 1 min and sample them at �100 Hz with a
signal-to-noise ratio of �10.

I N T R O D U C T I O N

In vivo two-photon laser scanning microscopy (TPLSM) of
brain cells labeled with a functional indicator is a powerful and
increasingly popular method to probe neural function. This ap-
proach, for example, enables the simultaneous detection of intra-
cellular Ca2� changes in populations of neurons and astrocytes
within the middle to upper layers of the rodent cerebral cortex
(Kerr et al. 2005; Ohki et al. 2005). However, it has been a
challenge to achieve high temporal resolution across regions of
cortex because only one voxel is measured at a time. The limit on
temporal resolution for functional imaging arises not from an
inability to scan the laser beam more rapidly, but rather from the
efficiency of two-photon excitation of the dye and the need to
avoid damage to tissue from high laser powers.

When cells of interest occupy only a small fraction of the field
of view, one means to increase the sampling rate is to scan along
an arbitrary path that passes cyclically through the cells of interest
(Göbel and Helmchen 2007; Göbel et al. 2007; Lillis et al. 2008;
Lörincz et al. 2007; Rothschild et al. 2010) rather than scanning
the entire field with a raster pattern. The rate-limiting step to
determine the scan path through a large number of cells is the need
to manually annotate the location of all somata. Automatic iden-
tification of somata in TPLSM images is a challenge due to low
signal-to-noise ratios associated with images deep within the
cortex and differences in the fluorescence intensity of cells caused
by uneven uptake of dye. Traditional spatial segmentation ap-

proaches that use handmade morphometric filters do not general-
ize across preparations. In particular, because of the need to
differentiate between cell somata, blood vessels, and unusually
bright areas of neuropil, approaches that segment based solely on
time-averaged intensity or predetermined masks do not perform
well. Furthermore, techniques that focus on temporal variation are
effective for disentangling cells in populations of asynchronously
active neurons and astrocytes but fail to detect cells that do not
spike or to differentiate cells that spike synchronously (Mukamel
et al. 2009; Ozden et al. 2008; Sasaki et al. 2008).

Here we address the issue of rapid scanning with a cell
segmentation algorithm that uses machine learning to automat-
ically identify the location of somata and an optimized scan
algorithm to compute a scan path that preferentially passes
through labeled somata while minimizing the time spent scan-
ning neuropil and unidentified tissue. This approach can incor-
porate scans across and along cerebral blood vessels (Schaffer
et al. 2006) to permit simultaneous measurements of neuronal
activity, astrocytic activity, and blood flow. Although arbitrary
scanning has been previously implemented for functional im-
aging by TPLSM (Göbel et al. 2007; Lillis et al. 2008;
Rothschild et al. 2010), our approach further optimizes the scan
pattern and integrates it with automated segmentation.

M E T H O D S

Experimental methods

ANIMAL PREPARATION. Our subjects were Sprague-Dawley rats
from Charles River, ranging in mass from 270 to 310 g. Initial
surgeries were performed under isoflurane (Baxter Healthcare) anes-
thesia, with 4% (vol/vol) in 30% oxygen and 70% nitrous oxide for
induction and 1–2% (vol/vol) for maintenance. Craniotomies were
placed over the hindlimb representation of the somatosensory cortex,
with a window size of �4 � 4 mm centered at 2.5 mm medial-lateral
and �1.0 mm anterior-posterior, as described (Kleinfeld et al. 1998;
Shih et al. 2009) A metal frame that supports a window made from a
no. 1 coverslip was mounted above the craniotomy and filled with
1.5% (wt/vol) agarose in an artificial cerebral spinal saline (Kleinfeld
and Delaney 1996). Catheters were placed in the femoral artery for
continuous measurement of blood pressure (BP-1, World Precision
Instruments) and withdrawal of arterial blood for blood gas analysis
(RapidLab 248, Bayer). The femoral vein was separately catheterized
for drug and anesthetic delivery. Isoflurane was discontinued before
imaging, and anesthesia was transitioned to �-chloralose with an
intravenous bolus injection of 50 mg/kg for induction and a steady
flow of 40 mg/kg/h for maintenance (Devor et al. 2008). Body
temperature was maintained at 37°C with a feedback-regulated heat
pad (50-7053-F, Harvard Apparatus). Heart rate and blood oxygen
levels were continuously monitored using a pulse oximeter (8600V,
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Nonin). Intraperitoneal injections of 5% (wt/vol) glucose in 1 ml
saline were given every 2 h to prevent dehydration. The care and
experimental manipulation of our mice and rats have been reviewed
and approved by the Institutional Animal Care and Use Committee at
the University of California at San Diego.

SOMATOSENSORY CORTEX MAPPING. We mapped the hindlimb re-
gion of the somatosensory cortex using intrinsic optical imaging of
blood oxygenation, as described (Drew and Feldman 2009; Frostig et
al. 1993). The contralateral hindlimb was electrically stimulated with
1 mA, 10 ms wide pulses delivered at 3 Hz for 3 s (Devor et al. 2008).
Images were acquired with a 12-bit CCD camera (1M60, Dalsa) with
a macroscope composed of camera lenses (Ratzlaff and Grinvald
1991). An initial image of the cortical vasculature was taken using 430
nm illumination to provide a map for dye injections. The cortical
surface was illuminated at 630 nm and images of a 3 � 3 mm field,
at 1,024 � 1,024 pixel resolution, were obtained at 58 frames/s and
binned into 256 � 256 pixel images at 2 frames/s for analysis.

CALCIUM DYE INJECTION AND IMAGING. In vivo two-photon imag-
ing was performed using the membrane-permeant Ca2� indicator
Oregon green BAPTA1 (OGB1)-AM (Invitrogen) as described
(Stosiek et al. 2003). Briefly, OGB1-AM was dissolved in 20%
(wt/vol) Pluronic F-127 in DMSO to a concentration of 10 mM. This
solution was diluted 1:10 with a buffered saline, 150 mM NaCl, 2.5
mM KCl, and 10 mM HEPES at pH 7.4, to yield a final dye
concentration of 1 mM for loading into a micropipette tip. The
coverslip over the cranial window was removed, the electrode was
lowered into the appropriate region of cortex, and the dye was
pressure injected, at 0.07 bar for 1 to 5 s, into the hindlimb somato-
sensory cortex at a depth 250–300 �m below the pial surface. The
pipette was left in place for 5 min to allow equilibration of the dye
with the tissue and then removed. The exposed cortical surface was
incubated with 50 �M sulforhodamine101 (SR101, Sigma) in buff-
ered saline for 10 min to label cerebral astrocytes (Nimmerjahn et al.
2004). Finally, the cranial window was resealed. All imaging was
performed with a two-photon microscope of local design (Tsai and
Kleinfeld 2009) using a 40� dipping objective and galvanometric
scan mirrors (6210H scanners with MicroMax 673xx dual-axis servo
driver, Cambridge Technology) and MPScope (Nguyen et al. 2006,
2009) for acquisition and control. The optimized scan algorithm is
readily integrated with this software. The excitation wavelength was
800 nm, and the collection band of OGB1 fluorescence was 350–570
nm and that of SR101 was 570–680 nm. Images were 256 � 256
pixels or 400 � 256 pixels in size, and a time series consisted of 200
frames collected at 5 or 10 Hz. Two sensory stimulation protocols
were used in conjunction with the imaging. A single 10 ms stimulus
was applied to the hindlimb to induce neuronal responses, whereas
thirty 10 ms pulses readily induced changes in both neuronal activity
and blood flow.

Computational procedures

IMPLEMENTATION OF THE CELL SEGMENTATION ALGORITHM. The
algorithm was implemented in MATLAB code and C�� code
compiled into MEX, i.e., MATLAB accessible, libraries. Robust-
Boost, which is an improved version of the Adaboost algorithm, was
used as realized in JBoost version 2.0r1, freely available at jboost.
sourceforge.net. The output classifiers generated by JBoost take the
form of MATLAB “.m” files. Cross-validation and other classification
metrics were evaluated using Python and Perl scripts distributed with
JBoost; we note that nfold.py, VisualizeScore.py, and atree2graphs.pl
are particularly useful. All calculations made use of a workstation
with a Intel Pentium D Processor with 4 MB of cache memory and a
3.2 GHz clock speed.

Our realization of the algorithm is organized into five principle
parts: 1) training code to generate the first step classifier; 2) annotation
and training code to help annotate and then generate the second step

classifier; 3) segmentation code whose input is full-field TPLSM
images and whose output is the result of the second classifier; 4)
PathGUI code that interacts with the segmentation code to find cells,
construct an optimized path through them, and interact with the
TPLSM control software; and 5) PathAnalyzeGUI code that is used as
a quick analysis tool to check the accuracy of the path. Additional
analysis code was developed to segment raw scan data, identify onset
times, and automatically differentiate astrocytes from neurons.

The training code used to generate the first step classifier takes
full-field TPLSM data as input. Adobe Photoshop was used to
perform annotations. Not all pixels that are parts of cells need to be
annotated, but modes care must be taken to avoid labeling pixels
inaccurately. The annotation and training algorithm that is used to
generate the second step classifier uses the output of the first step
classifier after it is thresholded at multiple levels. A graphical user
interface was developed to assist annotation. For each candidate
cell produced, the annotator is presented with its outline and can
choose whether the outline segments a cell, not a cell, or an
ambiguous region is ambiguous.

Both classifier training codes interact with JBoost using com-
mand line calls from MATLAB. The RobustBoost algorithm re-
quires three parameters to be chosen. The first parameter, i.e.,
rb_epsilon, characterizes the expected amount of error in the
annotations of the training set; the default value is 0.1. The second
parameter, i.e., rb_theta, characterizes how much separation is
desired between two classes; the default value is 0. The third
parameter, i.e., rb_sigma, characterizes how the potential function
changes with time; the default value is 0.1. To construct the first
classifier, rb_epsilon was set to 0.15, rb_theta was set to 0.2, and
rb_sigma was set to 0.1. To construct the second classifier rb_ep-
silon was set to 0.06, rb_theta was set to 0.1, and rb_sigma to 0.1.
The final decision tree contains hundreds of nodes, each with a
tunable threshold on a particular feature.

The final classifier is relatively insensitive to the exact values of the
parameters. Two parameters, i.e., rb_theta and rb_sigma, can be
changed by a factor of two to three with negligible effect. The most
critical parameter is rb_epsilon, which corresponds to the fraction of
expected errors in the annotation. This parameter should be set to the
lowest number for which the algorithm converges, We used the
training error found after 300 rounds of training with LogitBoost
(Friedman et al. 2000) to estimate this number. LogitBoost is a
common boosting procedure with no adjustable parameters apart from
the number of training rounds and produces slightly smaller training
error than RobustBoost but has a greater test error. In practice, the
value of rb_epsilon may be changed by a factor of 1.1 to 1.2 with little
effect on the test error. If the parameter rb_epsilon is set too low,
RobustBoost does not converge.

OPTIMIZED SCAN ALGORITHM. The cell detection algorithm is
integrated with a scan algorithm to generate a near optimal path
between the segmented cells. The location and spatial extent of all
cells are tabulated in terms of regions of interest (ROIs) formed by
rectangular bounding boxes around each cell. This scan algorithm
seeks to 1) maintain a constant scan speed over regions of interest,
such as segmented cells; 2) scan each cell with a single straight line
that, for computational simplicity, is restricted to cross the cell
through the corners of a bounding box; 3) maximize the speed of
the scan when the laser is not passing though a region of interest;
and 4) minimize the total time along the path by optimizing the
order in which cells are scanned. Mathematical details of the
algorithm are given in the APPENDIX.

The scan path is further optimized by rearranging the order in
which the ROIs are scanned, as well as by selecting among one of four
vectors that pass along the diagonals of each ROI, through the use of
the ANT System algorithm (Di Caro and Dorigo 1998). The ANT
System algorithm is used iteratively. Initially a large set of paths is
generated through a search among nearest neighboring cells to min-
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imizes the time it takes to go from one ROI to a specified second ROI,
cycling among all ROIs. Once all of the possible paths are generated,
they are weighed by the total distance of each path. This weighting
determines the interaction energy between any two ROIs; the inter-
action energy is set to zero if no path exists between a given pair of
ROIs. In the next iteration, a modified nearest neighbor search is
performed; this time, the nearest neighbor is determined by a weighted
function of the time it takes to move between a pair of ROIs and the
interaction energy between the two sites. This process iterates, with
the energy growing the more a path between two sites is used, until the
ANT System algorithm converges on a final, optimized pathway
among all sites. A lucid discussion is found in Wikipedia
(en.wikipedia.org/wiki/Ant_colony_optimization).

ON-LINE DOWNLOAD. All of the software presented in this paper will be
available for download at physics.ucsd.edu/neurophysics/links.html.

R E S U L T S

Cell segmentation consists of two classification steps. In the
first step, we classify individual pixels as to whether they are part
of a cell. The pixels identified as being part of a cell are divided
into connected elements that form candidate cells. In the second
step, we classify these connected elements as to whether they are
indeed cell somata as opposed to other features. The first step
yields a significant number of false positives. The second step
removes most of these false positives and generates the final
decision as to the locations of the cells. Both steps use classifiers
generated by the RobustBoost algorithm (Freund 2009), which is
relatively insensitive both to explicit errors in human annotations
and inconsistencies in labeling of ambiguous regions (Schapire et

al. 1998). RobustBoost is part of a family of machine learning
algorithms called Boosting, which have been used in several
biological image segmentation problems (Giannone et al. 2007;
Liu et al. 2008). The classifiers consist of a nonbinary decision
tree whose nodes correspond to thresholds on selected features
and whose output is a score that corresponds to whether a given
pixel is part of a cell. RobustBoost iteratively adds nodes and
adjusts the thresholds to optimize the prediction given by the
decision tree relative to the manually annotated images.

The first step classifier determines whether a pixel belongs to a
cell. The inputs to the classifier are feature maps that highlight the
objects of interest in the TPLSM data. To identify cells, we chose
eight heuristics that evaluate temporal and spatial differences,
including mean values, variances, covariances, correlations, and
normalized versions of these quantities (Table 1). RobustBoost is
used to generate the classifier, using as training data the full-field
images of cortical regions in which pixels in the images are
annotated as to whether they are part of a cell, not part of a cell,
or if the determination is ambiguous. Once trained, the output
from this classifier corresponds to a map of the score of a pixel
being part of a cell. The output is median filtered to remove
isolated pixels and thresholded at multiple levels to form con-
nected elements that are candidate cells.

The second classifier scores whether a candidate cell is
indeed a cell. This classifier takes as input a second set of
feature maps computed from the output of the first stage,
this time using six morphological properties (Table 2). We
again use RobustBoost with training data in which we

TABLE 1. Feature map of time-series image data

Index Feature Map

1 Ix,y
Mean � �Ĩx,y�t��*†

2 Ix,y
Var � �[Ĩx,y(t) � Ix,y

Mean]2�

3
Ix,y

Cov � ��[Ĩx,y(t) � Ix,y
Mean][Ĩx�1,y(t) � Ix�1,y

Mean ]�2 � ��Ĩx,y(t) � Ix,y
Mean][Ĩx,y�1(t) � Ix,y�1

Mean ]�2

4

Ix,y
Corr ���[Ĩx,y(t) � Ix,y

Mean][Ĩx�1,y(t) � Ix�1,y
Mean ]�2

Ix,y
Var Ix�1,y

Var �
�[Ĩx,y(t) � Ix,y

Mean][Ĩx,y�1(t) � Ix,y�1
Mean ]�2

Ix,y
Var Ix,y�1

Var

5 Ix,y
NormMean�Ix,y

Mean�Îx,y
Mean� �̂x,y

Mean‡

6
Ix,y

NormVar �
Ix,y

Var � Îx,y
Var

�̂x,y
Var

7

Ix,y
NormCov �

Ix,y
Cov � Îx,y

Cov

�̂x,y
Cov

8

Ix,y
NormCorr �

Ix,y
Corr � Îx,y

Corr

�̂x,y
Corr

*�I�t�� � 1 � N�t�1
N I�t�. † Ĩ�t� � I(t)�W5, where Wn is a uniform filter of n pixels.

‡ Ĩ�t� � I�t��W21 and �̂x,y � ��x'�x�10
x�10 �y'�y�10

y�10 �Ix,y�t��Îx,y	2⁄��21�2�1.
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annotate the output of the first classifier to identify candidate
cells as cells, not cells, or ambiguous objects. The final
likelihood map generated by the trained classifier is thresh-
olded at or near zero and contains only connected elements
that are likely to be cells.

We realized the cell segmentation algorithm by training the
first and second classifiers using 64 different datasets, i.e., 16
different regions imaged with TPLSM over four trials each in
four animals (see examples in Fig. 1). Each data set consisted
of 200 consecutive frames at a resolution of 256 � 256 pixels
or higher. Once the training was completed, we applied the cell
segmentation algorithm to segment a test set. In all of our tests,

we used a single classifier that was trained only once with
annotated data from different regions of the cortex, different
magnification and contrast levels, and different animals.

The application of our method to test cases is shown
in the example of Fig. 2, which shows the eight feature
maps generated from the data (Fig. 2A) and the output from
the first classifier (Fig. 2B); the thresholded version of this
output, at multiple levels, is used as input to the second
classifier. The output of the second classifier (Fig. 2C) is
thresholded at zero to yield the segmented cells (Fig. 2D). In
practice, it takes several hours of computer processing time
generate the classifiers for a particular preparation but only

TABLE 2. Feature map of intermediate cluster data

Index Feature Map

1 Threshold level at which the candidate is generated
2 The area of the candidate, in pixels
3 The Euler number, defined as the number of objects in the candidate minus the number of holes in those objects.
4 The extent, defined as the area of the candidate divided by the area of the bounding box.
5 The eccentricity of an ellipse that has the same second-moments as the candidate.
6 The solidity of the candidate, determined as the ratio of the area of the candidate to that of the associated convex hull.

A

B

FIG. 1. Examples of annotations used to
generate the 2 classifiers. A: example, shown
raw and annotated, for the 1st classifier. This
image is 1 of 16 full field images annotated
in Adobe Photoshop. Because 4 trials were
performed for each annotated region, these
annotations were used in learning on 64
stimulation trials. Green indicates that the
pixel is part of cell somata, whereas blue
indicates that it is uncertain whether a pixel
is part of cell somata. All uncolored pixels
are taken as examples of pixels that are not
parts of cells. Notice that a very rough an-
notation was sufficient to produce good re-
sults. B: example to generate second classi-
fier. A screenshot of a graphical user inter-
face used to annotate whether a particular
cluster of pixels is a cell, not a cell, or
ambiguous region. Left: a large mean image
is shown with a current candidate cell out-
lined. Outlines that have not yet been eval-
uated are colored blue, those that were
selected as not cells are colored red, those
that have been selected as cells are colored
green, and those that were selected as
ambiguous regions remain colored blue.
Top right: a normalized mean image of the
region. Bottom right: a mean image with
all of the previously made selections out-
lined with appropriate colors.
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a few minutes to apply the algorithm and segment all cells
in a sequence of images.

To evaluate the cell segmentation algorithm, a k-fold
cross-validation was performed for both the first and second
step classifiers by lumping training sets from the 16 differ-
ent brain regions and partitioning the data into five equal
sets (k � 5). Five different estimates for test error were
obtained by training on four of the five sets and using the
remaining set to test. We observed an average estimated
error of 0.07 (combined false positives and false negatives)
for the test data. The area under the receiver operating
characteristic (ROC) curve, a combined measure of method
specificity and sensitivity, is 0.97 and is dominated by false
positives (Fig. 3). An examination of incorrectly classified
cells shows that they predominantly occur in areas where it
is difficult for a human expert to consistently label the cells.

Implementation

As a proof-of-principle implementation of our algorithms,
we performed �200 trials of fast scanning measurements
across 23 fields in primary somatosensory cortex that re-
sponded to stimulation of the hindpaw (n � 4 rats). The
scan-mirror speed was adjusted so that the imaging time for
each cell was �200 �s per scan cycle, which yielded a
signal-to-noise ratio sufficient to detect the nominal 10%
fluorescence changes associated with calcium action poten-
tials in neurons labeled with the indicator OGB1 (Dombeck
et al. 2007; Kerr et al. 2005, 2007; Komiyama et al. 2010;
Ohki et al. 2005; Rothschild et al. 2010). Recall that the
calcium spikes are not necessarily associated with single

sodium spikes, since previous work has shown that many
sodium spikes can contribute to a single calcium spike
(Greenberg et al. 2008). We chose to study the upper layers
of cortex for technical convenience and because different
somata are well separated. Objects that overlap will be
rejected, so that areas with extremely dense cells may be
problematic and were thus avoided.

We present two typical examples of fast scanning in cortical
layers 2/3 of rat somatosensory cortex with our approach. The first
is a region with 68 identified cells, 64 neurons, and 4 astrocytes
that was scanned at 70 Hz (Fig. 4, A–D). Data were acquired for
10 min with only minimal photobleaching. The second is a region
with 20 identified cells, 19 neurons, and 1 astrocyte, along with
three blood vessels, that was scanned at 110 Hz (Fig. 4, E–H).
Data were acquired for 4 min, again with only minimal bleaching.
In both examples, the cell segmentation algorithm was used in
conjunction with full-field images from the OGB1 emission chan-
nel to determine all possible cell bodies (Fig. 4, A and E; see
Supplemental Fig. S11 for an example of segmentation of 12 trials
across 4 animals using the same classifier). Segmentation requires
about 1 min of computation, and determination of the optimized
pathway requires an additional 2 min. Cells that were co-labeled
with the astrocytic marker sulforhodamine 101 (SR101) were
automatically labeled as astrocytes; the coordinates of selected
blood vessels were also marked. The optimized scan algorithm
was used to find the shortest cycle time through all cells (Fig. 4,
A and E), with �70% of the scan time spent over ROIs, and a
series of scan measurements was performed that encompassed
periodic sensory stimulation (Fig. 4, B and F). The typical signal-

1 The online version of this article contains supplemental data.

A

B C D

FIG. 2. Example of segmentation of a test data set. A: the 4 unnormalized filtered version of the raw data (Table 1, formulas 1–4). The color corresponds
to amplitude of the filtered output. The normalized versions of filtered images from A (Table 1, formulas 5–8). B: the output of the 1st classifier. The color
corresponds to the likelihood that a given pixel is a cell. C: the output of the 2nd step classifier, with isolated pixels, i.e., speckle noise, removed with a 5 �
5 pixel median filter, along with the output values thresholded to form clusters of pixels that are candidate cells; we chose 6 levels, which correspond to pixels
lying in the top 5, 10, 15, 20, 25, and 30% of the maximum amplitude. D: final classification made by thresholding the output shown in C.
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to-RMS-noise ratio, which we define as the ratio for a change in
intracellular calcium induced by a single sensory stimulus, which we
define as the ratio of the peak value of the response to the value of the
RMS noise during baseline activity, is �10 (Fig. 4, C and G).

Our rapid segmentation process also facilitates on-line data
analysis. For example, the average trial-by-trial activity of all
cells as a function of time after stimulation is readily calculated
(Fig. 4D). As a second example, changes in astrocytic calcium
levels together with changes in the speed of red blood cells in
a nearby microvessel are readily compared with the composite
neuronal activity (Fig. 4H).

D I S C U S S I O N

Our cell detection method can identify and find borders of �70
cells in a 512 � 512 pixel image in 1 min, which appears to be at
least 10-fold faster than human annotation. This is crucial for
studies that involve longitudinal measurements of somatic activa-
tion, such as developmental plasticity (Golshani et al. 2009;
Rochefort et al. 2009), or swelling of the brain, such as experi-
mental stroke (Sigler et al. 2009), where recalculation of the scan
path compensates for shifts in the position of cells. As a practical
matter, multiple cells and blood vessels may be monitored typically
at rates that are 10-fold greater than those achieved with full-field
images.

Optimization of the scan algorithm insures that the majority
of time is spent over somata and blood vessels of interest. We

chose to optimize with use of the ANT system algorithm (Di
Caro and Dorigo 1998). This approach was chosen over gra-
dient descent algorithms, genetic algorithms (Potvin 1996), and
convex hull algorithms (Nikolenko et al. 2007) because, for
regions with �100 ROIs, the ANT system is relatively insen-
sitive to internal parameters when computing the shortest
pathway. Although there is no strong upper bound on the time
for convergence of the ANT algorithm, the time increases
slowly with an increase in the number of ROIs. The relatively
high efficiency of this process may, in some instances, obviate
the need to replace galvometric scanners with acousto-optical
deflectors (AODs). Arbitrary path scanning can also be com-
bined with AODs for three-dimensional scanning applications
(Duemani-Reddy et al. 2008; Vucinić and Sejnowski 2007).

One potential limitation of optimized path scanning is that it is not
compatible with schemes for correcting for motion artifacts
(Dombeck et al. 2007). This implies that our method should be
primarily used on anesthetized animals. Nonetheless, the segmen-
tation part of our approach can be used to do postexperiment analy-
sis of full-frame images collected from behaving animals. This allows
one to analyze in hours what could take weeks to do manually.

The insensitivity of our algorithm to correlated activity implies that
it may be superior to correlation-based algorithms (Mukamel et al.
2009; Sasaki et al. 2008). The natural capability of learning-based
approaches, such as ours, to generate very complex morphological
classifiers makes it superior to hand-tuned approaches, albeit at the

A

C

B

D

FIG. 3. Validation statistics for the classi-
fiers. A: a histogram of cross-validated exam-
ples binned by the scores they have received
from the first classifier. Black are examples of
pixels that are parts of cells, whereas gray are
examples of pixels that are not parts of cells.
B: receiver operating characteristic curve of the
1st classifier; the 2 dotted lines indicate the
point on the ROC curve for which the score
threshold is zero. Note that because ground
truth is poorly defined, the ROC curve is only
approximately representative of the real classi-
fier errors. C: a histogram of cross-validated
examples binned by the score they have re-
ceived from the 2nd classifier. Black are exam-
ples of candidate cells that are actually cells,
whereas gray are candidate cells that are not
cells. D: an ROC curve of the 2nd classifier;
the 2 dotted lines indicate the point on the ROC
for which the score threshold is zero, which is
the nominal final threshold for our algorithm.
Note that because ground truth is poorly de-
fined, the ROC curve is only approximately
representative of the real classifier errors.
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cost of obtaining and annotating training data. At the same time, our
approach can make use of specialized filters, such as automatic spike
train deconvolution (Vogelstein et al. 2010), to provide a fuller
analysis of TPLSM data. Last, the use of compiled languages or
specialized hardware may greatly decrease the computational time to
segment the image data and compute an optimized scan path.

A P P E N D I X

The portions of the scan path that pass through the ROIs are created
as straight lines, given by

P � P0 � Vlinear · t

where P is a two-dimensional vector of voltages that specifies the
deflection of the scan mirrors that in turn directs the beam. The

parameter Po is the initial voltage and the parameter Vlinear is the
slew (in V/ms), whose magnitude determines the time spent cross-
ing the cell and whose direction is set by the diagonal of the
bounding box. The paths through each ROI are connected by
third-order polynomial splines that are constructed so that the scan
path is continuous in both voltage and slew. This creates a
physically realizable path that is followed by the scan mirrors with
a constant delay, typically 80 �s for our scanners. The connecting
paths between the ROIs are described by

Pspline � Pi � Vi · t � C · t2 � D · t3

where for computational convenience, the spline is taken to start at t �
0 and end at t � �, the initial voltage Pi and slew Vi are set to match
the position and velocity of the end of the ROI preceding the spline,
and the parameters C and D are found from

E

F

G

H

C

D

B

A

FIG. 4. Two examples of cell segmentation and fast scanning for functional imaging of neurons and astrocytes in rat parietal cortex. A: a full-field image of
a region with 68 cells, obtained at 4 frames/s, with a scan path superimposed on it in which all cells are sampled at 70 Hz. The green channel shows the
fluorescence from Oregon Green Bapta-1, whereas the red channel shows fluorescence from Sulforhodamine 101. White shows the outlines of cells as determined
by our algorithm. B: part of the raw data output from consecutive scans, including a hindlimb stimulation. C: activity of 10 cells, 9 neurons, and 1 astrocyte as
indicated in A and B, during the same time interval as shown in B. The traces shown in the order of the cells that were scanned and represent typical results.
D: distribution of onset times for changes in intracellular [Ca2�] in all 68 cells after stimulation across 9 trials. E: a full-field image of 19 neurons, 1 astrocyte,
and 3 blood vessels scanned at 110 Hz with a scan path superimposed on it. F: part of raw data output that includes a hindlimb stimulation event. G: activity
of cells, neurons, and an astrocyte indicated in E and F during the same time interval as shown in F. H: the calcium response of the astrocyte (A1), the average
neuronal response (N1–N19), and the speed of red blood cells in one capillary (V1).
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C�
3Pf

�2 �
3Pi

�2 �
2Vi

�
�

Vf

�

and

C�
Vf

3�2 �
Vi

3�2 �
2C

3�

The value of � is the smallest positive real value that does not
subject the mirrors to an acceleration larger than a hardware limit,
denoted m, where typically m � 100 V/ms2. Candidate values for the
shortest possible spline length are found by setting the acceleration to
�m at the beginning and end of each spline, and finding all positive
real values for �, i.e.

0 � 	m�2�(4Vf � 2Vi)� � (6Pi � 6Pt)

for acceleration at the start of a spline and

0 � 	 m�2 � (4Vi � 2Vt)� � (6Pi � 6Pt)

for acceleration at the end of a spline. This leads to multiple values for
�; we choose the smallest value that bounds the acceleration at the
beginning and end of the spline but allows the mirrors to make
positional errors on other parts of the spline (Supplemental Fig. S2).
Thus |2Cx| � m, |2Cy| � m, |2Cx �6Dx�| � m, and |2Cy �6Dy�| � m.

The total time spent scanning across the regions between ROIs was
minimized by estimating the optimum order in which to scan the
ROIs. This is a “traveling salesman” problem in terms of minimizing
the time between ROIs, for which the ANT System algorithm (Di
Caro and Dorigo 1998) provides a robust and easily implemented
approximate solution. Finally, the vector along the diagonals through
each ROI is iteratively adjusted to further minimize the total time
spent scanning across connecting sections.
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