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The ability to compute the difference frequency for two periodic signals depends on a
nonlinear operation that mixes those signals. Behavioral and psychophysical evidence sug-
gest that such mixing is likely to occur in the vertebrate nervous system as a means to
compare rhythmic sensory signals, such as occurs in human audition, and as a means to lock
an intrinsic rhythm to a sensory input. Electrophysiological data from electroreceptors in
the immobilized electric fish and somatosensory cortex in the anesthetized rat yield direct
evidence for such mixing, providing a neurological substrate for the modulation and demod-
ulation of rhythmic neuronal signals. We consider an analytical model of spectral mixing
that makes use of the threshold characteristics of neuronal firing and which has features
consistent with the experimental observations. This model serves as a guide for constructing
circuits that isolate given mixture components. In particular, such circuits can generate
nearly pure difference tones from sinusoidal inputs without the use of band-pass filters, in
analogy to an image-reject mixer in communications engineering. We speculate that such
computations may play a role in coding of sensory input and feedback stabilization of motor
output in nervous systems.

§1. Introduction

Oscillations are a hallmark of neuronal activity. When two neuronal oscillators
interact through synaptic connections, their respective spike patterns often synchro-
nize or lock with a non-zero phase shift. A dramatic example concerns two cortical
neurons that interact via reciprocal inhibitory connections and spike in anti-phase at
low firing rate but synchronize at high firing rate.1) This remarkable shift in behavior
was predicted2),3) using the theory of weakly coupled oscillators that was pioneered
by Prof. Kuramoto and elucidated so clearly in Chemical Oscillations, Waves and
Turbulence.4) This theory has provided further insight through its application to the
dynamics of networks of neurons,5) where collective behavior can lead to linear waves
of electrical activity in a central olfactory organ6)–8) and rotating waves of electrical
activity in visual cortex9) and in neocortical slices under epileptic-like states.10) At
a still higher level, the Kuramoto model has been used to study neuronal synchro-
nization in stimulus coding,11)–14) as appears to occur in the processing of multiple
stimuli by visual cortex.15)

It is our belief that the application of Prof. Kuramoto’s ideas to coupled neurons
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represents one of the only two intellectual threads that systematically connects single-
cell behavior to network behavior. For weakly coupled neuronal oscillators, this
is achieved by the reduction of the full dynamics of each cell to dynamics of a
single phase variable that describes the state of a neuron along its limit cycle. The
phase variables for different cells are coupled through a sensitivity function, which
corresponds to Kuramoto’s Z-function, and an interaction function, each of which
is described in terms of phase variables so that the output of one cell affects the
phase of other cells.5) For completeness, the second intellectual thread is the strong
coupling of neurons with independent Poisson-spike statistics, either in the limit of
large networks16) or slow synapses;17) both cases result in a firing rate description
that is the key ingredient of attractor neural networks.18)–20)

Here we turn our attention to a functional consequence of interactions between
oscillators in pursuit of the computational role they may play in sensorimotor sys-
tems. Motivated by experimental findings, we consider the spectral mixing that
can occur between two periodic signals. Mixing provides a mechanism for com-
puting the differences and sums of the frequency content of two signals. This can
easily be seen when mixing is accomplished by the multiplication of two sinusoids,
cos(2πfat) × cos(2πfbt) = 1

2 cos[2π(fa − fb)t] + 1
2 cos[2π(fa + fb)t]. When combined

with a means for isolating the difference term, spectral mixing allows the compar-
ison of even small differences in the frequency content between two signals. This
phenomenon is commonly witnessed in audition, where human subjects are sensitive
to the beat, or difference, frequency between two simultaneous pure tones.21) The
perception persists when the frequencies are presented to different ears, indicating
a neural rather than a biomechanical substrate for the mixing. Similar computa-
tions may be performed in various ethological tasks, including: (i) Electroreception,
where animals sense the difference in frequency between their own rhythmic elec-
trical discharge and that of a neighboring fish;22),23) (ii) Echolocation, where the
relative speed of flight between a bat and its prey is encoded in the difference in
frequency between outgoing and reflected acoustic waves;24) and (iii) Pitch determi-
nation, where animals recognize the fundamental frequency of a sound based on a
harmonic stack, even when the stack is missing the fundamental.25)

If we extend the example to the case in which the two sinusoids are at the
same frequency but have a phase difference, we obtain, cos(2πft)× cos(2πft− φ) =
1
2 cos(φ) + 1

2 cos(4πft − φ). Here, isolating the DC term allows measurement of the
relative phase between two signals. Such a function can also be relevant for sensory
processing, as in (i) Audition, where the phase difference that results from the time it
takes for a sound to reach the two ears serves as a measure of source angle;26),27) and
(ii) Vibrissa somatosensation in rats, where the relative phase between a rhythmic
motor signal and a touch signal may be used to decode the position of an object
relative to the head.28)

§2. Electrophysiological evidence for spectral mixing

While spectral mixing would appear to be a useful computation in several sys-
tems, we only know of three neurophysiological studies that have observed this phe-



88 D. Kleinfeld and S. B. Mehta

nomenon. We first review these experimental findings and use the data as motivation
for a minimal model of spectral mixing by neurons. We then raise a conjecture about
circuits that make use of phase shifts, rather than filtering, to isolate desired fre-
quency components after the mixing has occurred.

2.1. Human vision

An experiment by Regan and Regan29) recorded electroencephalograms (EEGs)
across visual cortical areas in human subjects as they attended to two superimposed,
modulated visual gratings. An analysis of the EEG signals showed that the spectrum
contained a term at a frequency of 2f1 + 2f2, where f1 and f2 were the temporal
modulation frequencies of the two gratings and the factor of 2 is due to the presence
of both light-to-dark and dark-to-light transitions.

2.2. Fish electroreception

The sense organ of the paddlefish Polyodon Spathula, a species of electric fish,
consists of electroreceptors that cover the animal’s rostrum, a flat structure that
projects from the head (Fig. 1(a)). Neiman and Russell30) demonstrate that this
electroreceptor system contains two distinct oscillators. One oscillator exists within
a cluster of canals in the epithelia of the sensor and produces oscillations in the range
of 10 to 30 Hz. The second oscillator arises from the axon terminals and produces
an oscillation in the range of 30 to 70 Hz.

The authors made extracellular recordings from the anterior lateral line nerve
(ALLn) (Fig. 1(a)), reporting spiking from a single sensory cell. Their recordings
contained rhythmic contributions from both the epithelium, with frequency fe, and
from the afferents, with frequency fa (Fig. 1(b)). Critically, the authors found mix-
ture terms at frequencies fa + fe, fa − fe, and 2fa − fe. Introduction of a sinu-
soidal external stimulus, with frequency fs, led to mixing among all three oscillators
(Fig. 1(c)). The authors note that this behavior is consistent with mixing of the os-
cillators, although they prefer an explanation based on synaptic modulation of one
oscillator by the other.

2.3. Rat somatosensation

The somatosensory cortex in rat has a prominent region, known as the vib-
rissa primary somatosensory (S1) cortex, that is devoted to the processing of tac-
tile stimuli from the animal’s large facial whiskers, or vibrissae (Fig. 2(a)). Rats
move their vibrissae in 5 to 15 Hz exploratory movements and such moving sen-
sors pose a sensory challenge: the spatial meaning of a contact event depends
on its phase relative to the oscillating vibrissa position. A plausible model32) for
this problem approximates the position and touch signals as sinusoids, i.e., Motion
∝ 1 + cos(2πfmotiont− φmotion), where φmotion is the preferred phase of a given neu-
ron31) and Contact ∝ 1 + cos[2πfmotion(t − tcontact)] + higher-order terms,∗) where
tcontact is the time of contact. Spectral mixing of these two signals leads to an
output that contains the phase difference term cos(2πfmotiontcontact − φmotion), as

∗) Higher order terms are needed here to enforce causality, as a periodic touch signal cannot be

symmetric about tcontact.
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Fig. 1. Mixing in the anterior lateral line afferents in the paddlefish. (a) Diagram of the electrore-

ceptor. Recordings are made from afferents in the afferent lateral line nerve (ALLn) ganglion.

The example time series shows an extracellular recording and the corresponding instantaneous

frequency. (b) The spectral power of the ALLn signal in the absence of stimulation. Note

contributions of the afferent and epithelial oscillators, with frequencies fa and fe respectively,

as well as the mixture terms. (c) The spectral power during stimulation of the epithelium at

frequency fs. Panels adapted from Ref. 30).
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discussed in the introduction above. If this term is isolated, the resulting spike rate
will be highest when contact occurs at particular phase relative to vibrissa motion;
preliminary data provides evidence for such a signal in behaving animals.33)

an external stimulus with frequency fs was turned on at time zero.
In our laboratory, Ahrens et al.34) studied the underlying computation by intro-

ducing two incommensurate frequencies into the cortex of an anesthetized rat. An
intrinsic oscillation (centered at frequencies fi from 2 to 5 Hz) was introduced to cor-
tex through the application of the anesthetic ketamine, and a second oscillation was
added using mechanical stimulation of the vibrissae at frequencies fs in the range 5
to 15 Hz (Fig. 2(b)). The authors observed only intrinsic oscillations in the absence
of a mechanical stimulus. During stimulation, however, they found the addition of
both the stimulus frequency and the mixture frequencies fs±fi (Figs. 2(b) and (c)).
Higher-order mixture terms, such as 2fs − fi, here likely result from harmonics in
the punctate shape of the stimulus rather than from the nonlinearity responsible for
mixing. The authors found similar results when the two frequencies were separately
applied to the two sides of the head in a procedure reminiscent of binaural mixing
in audition, rather than using the anesthesia induced oscillations.

§3. Threshold model for mixing

We now turn our attention to a phenomenological model of the experimental
findings. The results for the paddlefish electroreceptive organ and the rat vibrissa
S1 cortex have a number of common features: (i) The “input” frequencies, e.g., fs

and fi in Fig. 2, are present in the output; (ii) Primary mixing terms, e.g., fa + fe

and fa −fe in Fig. 2, are present in roughly equal proportion; and (iii) Higher-order
terms, such as harmonics of the inputs, are present at the output. Any of a number
of cellular nonlinearities35),36) may account for these observations. We focus on the
consequences of the threshold firing properties of a neuron and consider a simple but
analytically tractable model.

We describe a rhythmic post-synaptic input to a neuron as

x(t) = cos(2πfat + φa) + ρ cos(2πfbt + φb), (1)

with 0 < ρ ≤ 1, and consider the threshold relation given by

y(t) = [x(t) − θ0]+, (2)

where θ0 is the value of the threshold and [f(t)]+ is the Heaviside function, i.e.,
y(t) = 0 when x(t) < θ0 and y(t) = 1 when x(t) ≥ θ0. The output can be expressed
in terms of closed integrals34) to yield

y(t) =
1

2πi

∞∑
n=−∞

∞∑
m=−∞

In,m

(
θ0, ρ

)
ei[n(φa+π/2)+m(φb+π/2)] e2πi(nfa+mfb)t, (3)

for integer mixture coefficients m and n. The first factor,

In,m

(
θ0, ρ

)
� lim

ε→0

∫ ∞

−∞

dΩ
Ω − iε

e−iθ0Ω Jn(Ω) Jm(ρΩ), (4)
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Fig. 2. Mixing in the vibrissa primary sensory cortex from rat. (a) Cartoon showing the vibrissae

and their axis of motion. (b) Example recordings from different depths in vibrissa S1 cortex.

The data on the left are time series of the the current source density (CSD), which is the discrete

second derivative of the measured voltage and approximates the divergence of current flow (scale

bar 10 mV/mm2). An external stimulus with frequency fs was turned on at time zero. The

panel on the right shows the spectral power for the same depths during stimulation. Note the

presence of mixture frequencies fs ± fi. (c) The spectral power before (top panels) and after

(bottom panels) stimulation at a depth of 450 µm. Higher order mixture terms and harmonics

due to the non-sinusoidal nature of both intrinsic and stimulus-induced oscillations give rise to

the peaks indicated by gray text. Gray bands correspond to 95% confidence intervals. Panels

(b) and (c) adapted from Ref. 34).
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to the input. The bottom panel shows the power spectrum computed from a 10 sec output

time series. The gray band here indicates approximately one decade below the power of the

fundamentals. Parameters were set to ρ = 1.0, fa = 5 Hz, fb = 8 Hz, and θ0 = 0.8. Panels

adapted from Ref. 34).

is an integral over Bessel functions that sets the magnitude of each mixture term,
and must, in general, be evaluated numerically. The second factor sets the phase
of each term in the sum and the final factor represents a sinusoid at one of the
mixing frequencies, |mfa ± nfb|. We recall that Jk(Ω) = (−1)kJ−k(Ω), so that
In,−m

(
θ0, ρ

)
= (−1)mIn,m

(
θ0, ρ

)
and sum and difference terms of the same order

have equivalent magnitudes. The spectral representation for the output of the model
is given by

ỹ(f) �
∫ ∞

−∞
e2πifty(t) dt

=
1

2πi

∞∑
n=−∞

∞∑
m=−∞

In,m

(
θ0, ρ

)
ei[n(φa+π/2)+m(φb+π/2)] δ[f − (nfa + mfb)],

(5)

where δ() is the Dirac delta function. We see that ỹ(f) has contributions at all
possible mixture frequencies. Numerical calculations show that the magnitude of
the I1,±1

(
θ0, ρ

)
terms, and thus the spectral power in the sum and difference modes,

is maximized for ρ = 1.0 and θ0 = 0.8.34) An example of the threshold process and
resulting power spectrum is shown for these parameters in Fig. 3.
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§4. Multi-stage mixers for isolation of spectral components

The output from the threshold-based mixer contains components at the fun-
damental frequencies, their harmonics, the sum and difference mixture terms, and
higher order mixtures. In principle, a band-pass filter could be used to isolate one
of these components. This method is limited, however, as the frequencies of neigh-
boring components may be close to each other in value. An alternative method uses
interference effects in a manner analogous to the structure of image-reject mixers
in communications engineering.37) The inputs to two or more threshold units are
phase-shifted and the outputs summed, in such a way that undesired components
cancel. This requires that we introduce additional circuit elements that can shift
the phase of each of the two inputs. Although a simple delay line could accomplish
this for a fixed frequency, we describe next a solution that works over a range of
frequencies.

4.1. Phase shifters

We first consider the special but useful cases of shifts of φ = π radians, φ = π/2
radians, and φ = −π/2 radians.

Phase shifting by a factor of π radians can be accomplished with a fast inhibitory
synapse, so that the corresponding post-synaptic input to the threshold unit is neg-
ative going rather than positive going (Fig. 4(a)). Then,

φoutput = φinput + π, (6)

corresponding to inversion of the signal.
A phase shift of π/2 radians arises naturally in the neuronal implementation

of a phase-locked loop (PLL),38)–41) which is a feedback circuit that adjusts the
frequency of a local oscillator to match that of an input signal.42) A generic analog
PLL consists of three components. First, a mixer multiplies the input oscillator by
the output of a local oscillator. Second, a low-pass filter K(t) isolates the error term,
ε(t), where

ε(t) ∝
∫ t

−∞
dτ K(t − τ) cos(2πfinputτ + φinput) cos(2πflocalτ + φlocal − π/2).

Third, the frequency of the local oscillator is shifted so that flocal = f0 +gε(t), where
f0 is a center frequency and g is a gain factor. When the PLL locks, flocal ≈ finput

and ε(t) ∝ sin(φinput − φlocal).
Self-consistency requires that the measured phase, φout, at the output of a locked

PLL is of the approximate form

φout ≈ φinput +
π

2
+ sin−1

(finput − f0

G

)
, (7)

where the constant G is proportional to the gain factor g.∗) The local oscillator and
the input will tend to be π/2 radians out of phase when either the gain g, and thus

∗) The factor of π/2 is commonly implicit in textbook formulas, as the local oscillator is described

by a sine function while the external input is given as a cosine. This factor was inadvertently dropped

in Eq. (10) of Ref. 41).
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Fig. 4. Phase shifter circuits. (a) Shift of π radians via an inhibitory interneuron that functions as

an inverting but otherwise linear input-output device. (b) Shift of π/2 radians with a phase-lock

loop that consists of 3 neurons: one operating as a mixer, one acting as a low-pass filter, and

an oscillator whose frequency is a monotonically increasing function of its input.

the constant G, is large or the input frequency finput is close to the intrinsic frequency
f0. Intuitively, the shift of π/2 radians occurs because for a PLL at steady-state,
the product of the input sinusoid and the local oscillator must average to zero when
the PLL is at steady-state.

With the above results, we note that a phase shift of −π/2 is readily achieved
by following a phase shift of π/2 (Eq. (7)) with an inversion (Eq. (6)).

4.2. A circuit to isolate the difference frequency

We use a mixer in combination with phase shifters of π and ±π/2 radians to con-
struct outputs that differ only in the phase term exp{i[n(φa + π/2) + m(φb + π/2)]}
from Eqs. (3) and (5). The phase shifts are chosen so that summation of the out-
puts leads to a cancellation of the input sinusoids, their harmonics, and the sum
frequency, as in an image-reject mixer.37)

As a step toward the design of the difference circuit, we first consider the can-
cellation of the fundamental frequencies. We start with two inputs of equal ampli-
tude, labeled a and b, and two threshold units, labeled 1 and 2. We then define
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cos(2πfa +φa,1), as the input a, phase-shifted by φa,1, to threshold unit 1; analogous
expressions apply for all combinations of inputs and outputs. From the phase term
above, we find that the output at each input frequency, corresponding to mixture
terms (n = 1, m = 0) and (n = 0, m = 1), is simply phase-shifted by π/2 relative to
the input. We thus choose, e.g.,

φa,1 = 0 and φb,1 = π,

φa,2 = π and φb,2 = 0,

with the result that the output terms for the fundamentals cancel when summed.
The summed output, Y (t) = y1(t) + y2(t), is given by

Y (t) =
i

π
I0,0

(
θ0, 1

) − i

π

{
cos[2π(fa + fb)t] + cos[2π(fa − fb)t]

}
I1,1

(
θ0, 1

)
+O(|n| + |m| > 2). (8)

Apart from the constant term, the output is similar to that for multiplication.
We now move to the case of maintaining only the primary difference term. In

principle, this can be done with three mixers and phase shifts of φ = 0, +2π/3 and
−2π/3 radians, but such shifts are difficult to generate. We consider an alternative
scheme with four threshold units, where the phase of the input to each unit is given
by

φa,1 = 0 and φb,1 = π,

φa,2 = π and φb,2 = 0,

φa,3 = +π/2 and φb,3 = −π/2,

φa,4 = −π/2 and φb,4 = +π/2.

The summed output, Y (t) = y1(t) + y2(t) + y3(t) + y4(t), is then

Y (t) =
2i

π
I0,0

(
θ0, 1

)
+

4i

π
cos[2π(fa − fb)t] I1,1

(
θ0, 1

)
+ O(|n| + |m| > 2). (9)

The difference circuit is illustrated schematically in Fig. 5(a), together with the
calculated results for the spectral power density for the choices fa = 8 Hz and fb = 5
Hz (Fig. 5(b)), demonstrating that the fundamentals are almost entirely suppressed.

We note that a straightforward modification of this circuit will preserve the sum
rather than the difference terms.

§5. Discussion

Spectral mixing is an integral aspect of electronic communication, as it provides
a means to detect and isolate specific frequency components. Certain designs, such
as double-balanced mixers and image-reject mixers, exploit the summation of phase-
shifted replicas to cancel out designated terms, much as interference effects are used
to direct radio signals from antenna arrays and to produce patterned illumination
in optics. It is of interest that despite the central role played by oscillators in ner-
vous systems, analogies to these spectral mixers have not been identified in vivo.
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shifters of π, π/2 and −π/2 radians (Eqs. (6) and (7)), threshold units that act as mixers

(Eq. (5)), and a linear summation element. (b) Spectral analysis of the output of the mixer
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gray band indicates the power in the largest of the higher-order components.

Given the presence of mixing terms in the experiments cited above, it is tempting
to conjecture that spectral mixing plays a role in neuronal computations. We thus
attempted here to demonstrate an implementation that is biologically plausible, al-
though experimental evidence for a neuronal implementation of a PLL is admittedly
weak.

As a technical issue, one weakness of our scheme is the need for constant phase
shifts over a broad range of frequencies. We choose to use phase-locked loops, a
common element in communication and control circuits,42) but even these engineer-
ing implementations have limitations. Locking will not occur if the loop gain is too
small, while a PLL will lock to a harmonic if the loop gain is too large. In engineer-
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ing applications, the latter issue typically limits the useful frequency range of a PLL
in the absence of additional circuitry. For example, initial locking may require that
the intrinsic frequency be swept, starting near f0 = 0, so that locking occurs at the
fundamental.

Our focus has been on mixing to form the difference and sum terms fa±fb, which
are prevalent in the experimental data summarized here. Other mixing terms are also
of potential interest, however, such as a 2fa−fb term that arises in psychoacoustics.43)

Although these terms can be generated by spectral mixing, alternative formulations
are possible. For example, mixing terms can also arise if one oscillator directly
provides synaptic modulation to another,30) rather than two oscillators summing in
a third threshold unit. As an example of such a system, and as a closing nod to the
Kuramoto model, we consider a system of two phase oscillators with unidirectional
coupling:

dφ

dt
= 2π

[
f0 + K sin(2πfdt − φ)

]
, (10)

where φ(t) is the phase of the driven oscillator, f0 is its intrinsic frequency, fd is the
frequency of the driving oscillator, and K is the coupling strength.

The dimensionless ratio K/|f0 − fd| determines the behavior of this system. If
this ratio is smaller than one, the driven oscillator will not entrain to the drive and
instead undergoes phase walk-through.44) In this case, we obtain an explicit solution
for φ(t) as

φ(t) = 2πfdt

−4π tan−1

{
K+

√
(f0−fd)2 − K2 tan

[
1
2

√
(f0−fd)2 − K2(t + C)

]
f0−fd

}
,

(11)

where C is a constant. A sinusoidal oscillator with this phase can be shown to
contain spectral components at frequencies given by fd ± m

√
(f0−fd)2 − K2, for

integer m. In the limit that K � |f0 − fd|, the driven oscillator has power at
frequencies {fd, f0, 2f0−fd, f0−2fd, · · · }, demonstrating another plausible route to
generating nonlinear mixing terms from the interaction of neuronal oscillators.
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