
AI Open 5 (2024) 142–154 

A
2
B

Contents lists available at ScienceDirect

AI Open

journal homepage: www.keaipublishing.com/en/journals/ai-open

Full length article

CellBoost: A pipeline for machine assisted annotation in neuroanatomy
Kui Qian a, Beth Friedman b, Jun Takatoh c, Alexander Groisman c, Fan Wang d,e,
David Kleinfeld c,f,∗, Yoav Freund b,g

a Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA 92093, USA
b Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
c Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
d Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
e McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
f Department of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA
g Halıcıoğlu Data Science Institute, University of California, San Diego, La Jolla, CA 92093, USA

A R T I C L E I N F O

Keywords:
Assisted intelligence
Boosting
Machine intelligence
Neuroanatomy

A B S T R A C T

One of the important yet labor intensive tasks in neuroanatomy is the identification of select populations
of cells. Current high-throughput techniques enable marking cells with histochemical fluorescent molecules
as well as through the genetic expression of fluorescent proteins. Modern scanning microscopes allow high
resolution multi-channel imaging of the mechanically or optically sectioned brain with thousands of marked
cells per square millimeter. Manual identification of all marked cells is prohibitively time consuming. At the
same time, simple segmentation algorithms to identify marked cells suffer from high error rates and sensitivity
to variation in fluorescent intensity and spatial distribution.

We present a methodology that combines human judgement and machine learning that serves to signifi-
cantly reduce the labor of the anatomist while improving the consistency of the annotation.

As a demonstration, we analyzed murine brains with marked premotor neurons in the brainstem. We
compared the error rate of our method to the disagreement rate among human anatomists. This comparison
shows that our method can reduce the time to annotate by as much as ten-fold without significantly increasing
the rate of errors. We show that our method achieves significant reduction in labor while achieving an accuracy
that is similar to the level of agreement between different anatomists.
1. Main

We present an adaptive system designed to assist neuroanatomists
with the task of annotating cells labeled with a molecular marker.
The standard, fully manual approach, referred to here as ‘‘unaided’’,
requires anatomists to detect as many marked cells as possible in each
section cut from the brain. In our approach, a computer detector iden-
tifies confident detections versus unconfident detections of potentially
labeled cells across each section. The anatomist then performs two
tasks. The first is quality control (QC) on the set of confident detections.
Here the anatomist examines, and either confirms or disputes, the com-
puter’s identification for a small fraction of this set of cells. The second
task is to examine all unconfident detections of cells; this corresponds to
marked cells that are difficult to categorize. In this way, the major time
of the anatomist is spent attending to the typically small population of
cells whose labeling is ambiguous. The reduction in anatomist labor
therefore depends on the ratio between the automated confident and
unconfident detections.

∗ Corresponding author.
E-mail addresses: dkleinfeld@ucsd.edu (D. Kleinfeld), yfreund@ucsd.edu (Y. Freund).

1.1. Significance for neuroscience

How do we study the computational pathways of brains? Brains are
composed of circuits at multiple scales of organization. These range
from the one to ten micrometer-scale of connections between individual
neurons, i.e., the microscopic, to the hundreds of micrometers to mil-
limeters scale of collections of neurons that form computational units,
i.e., the mesoscopic. Molecular tagging of neuronal cell types by the
expression of genetically encoded reporters and light-level imaging of
the cells and tags, using both transmission and fluorescent microscopy,
plays an essential role in this process. The resulting raw data files are
often extremely large, from 1 to 100 tera-byte per mouse brain. The cur-
rent means for quantification and spatial mapping of tagged neuronal
populations in brain sections require labor- and time-intensive manual
annotation by expert neuroanatomists. How can machine learning assist
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with this process and minimize the amount of manual labor involved,
while maintaining accuracy and consistency?

Our approach to neuroanatomy uses mouse brains that are serially
sectioned and stained with two markers. The somata of each cell
is stained with one fluorophore, a process denoted counterstaining.
In addition, specific cell types are marked with a second, different
fluorophore based on expression of a designated protein or mRNA. The
dual marking approach has the advantage of reducing false detections:
stained neurons are identified by combining information from the two
separate markers, one as a subset of the other (Tsai et al., 2009). The
images of these two markers for the same cell need not have identical
shapes.

1.2. Significance to machine learning

The standard goal of a machine learning algorithm is to reach
an accuracy as good as, or better than, a human, thereby justifying
replacing the human with the learned model. This accuracy is measured
according to an agreed upon ‘‘ground truth’’ that associates a ‘‘label’’
with each instance.1 Often the labels are subjectively selected by a
uman, and different humans sometimes assign different labels to the
ame instance. In such cases the notion of ‘‘ground truth’’ becomes
urky and it is unclear how to measure the performance of learned
odels. This phenomenon, called inter-rater disagreement (McHugh,
012), has been well studied in clinical neuroscience (Bekoe et al.,
020) but remains less explored in general neuroscience research.
ne contribution of this paper is to address the issue of inter-rater
isagreement in the context of machine learning for cell detection.

Our approach is to mimic multiple people annotating an instance.
e use several learned models, each with a slightly different training

et. We test if our models assign different labels to a test instance for
hich the human assigned labels differ as well. Inter-rater disagree-
ent rates quantify the average level of disagreement. Here we quantify

he level of disagreement on each particular instance. We consider the
ases of both human and machine labelers. We say that an instance
s ‘‘sure’’, or easily confirmed, if a significant majority of labelers are
ound to label it the same way. We say that an instance is ‘‘unsure’’, or
ifficult to confirm, if significant disagreement exists between labelers.
artitioning instances into ‘‘sure’’ and ‘‘unsure’’ is a central ingredient
or a type of learning protocol called active learning (Settles, 2009;
ughofer, 2012). ‘‘Sure’’ and ‘‘positive’’ labeled cells are expected to be
ave a low false positive rate. To verify that this is actually the case,
e take a fixed size sample and have it labeled by multiple human
nnotators. The key observation here is that only a small sample is
eeded to verify a low false positive rate.

A main novelty of this paper is that it studies algorithms for cell
etection in a dynamic work-flow that combines computers and hu-
ans, rather than in isolation, using a fixed training set. The goal is
ot to generate an autonomous system that can perform cell detection
t human accuracy. Instead, the goal is to reduce the amount of human
ork without degrading accuracy. The details of our approach are
iven in Section 3.6.

.3. Measures of performance

The methodologies employed to measure the performance of cell
egmentation and counting techniques should be both robust and sen-
itive to the intricacies of cell morphology and the varying conditions
nder which cells are imaged. Three different metrics and evaluation
trategies are typically considered to assess the efficacy and precision
f cell segmentation and counting. We adopt one of these.

1 We restrict ourselves to binary labels. We use the term ‘‘example’’ to
enote the pair (‘‘instance’’, ‘‘label’’).
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• Segmentation performance metrics: the Jaccard Index (Intersec-
tion over Union), Dice Coefficient (F1 Score, i.e., the harmonic
mean of the recall and precsion ), and the Boundary F1 Score.
These quantify the spatial overlap and boundary accuracy be-
tween the algorithmic predictions and ground truth annotations.
Typically, human derived ground truth annotations take enor-
mous labor.

• Counting cells: deviation between the automated counts and the
manual counts of labeled cells as performed by human experts.
Counting cells in a large brain is time consuming and expertise-
dependent. Further, the disagreement between human experts
may exceed expectations and need careful reconciliation. Even a
matching count between human experts does not imply accuracy
of individual cell detection.

• Binary test (adopted here): accuracy rate, false positive rate, and
false negative rate of a sample from the automated detections.
We reduce human labor by adopting binary annotation for cells
instead of using masks. Further, we take a sample from automated
detection of cells, and perform QC to provide insight into the
accuracy of the automated process.

1.4. Comparison to other work

Current popular bio-image analysis tools, such as Fiji (Schindelin
et al., 2012) and CellProfiler (McQuin et al., 2018), typically rely on
classical segmentation algorithms such as thresholding or watershed;
see Wiesmann et al. (2015) for review. Yet cell segnemtation is harder
than cell detection. Segmentation requires great expertise to select the
algorithm that suits the problem and to adjust its parameters. Such
manual configurations lead to time-consuming and expertise-dependent
processes. Additionally, these classical algorithms may struggle with
the heterogeneity of biological samples and technical artifacts, as has
been reported in Dima et al. (2011), Meijering (2012) and Ulman et al.
(2017). These limitations hinder the widespread adoption of imaging
technologies in biological laboratories (Caicedo et al., 2019).

Machine learning-based solutions for cell detection problems exist.
Most of these solutions rely on Neural Networks (NNs). Examples
include Ilastik (Sommer et al., 2011) and the Trainable Weka Seg-
mentation toolkit of ImageJ (Falk et al., 2019). These tools provide
plug-in models that take 2D images as input and output binary masks
as results. The plug-in models need to be retrained to fit to each
experimental situation. The retraining process involves preparing an-
notations as training data, training models, and configuring algorithms.
In particular, preparing annotations is time-consuming, taking humans
potentially weeks to draw contours for thousands of cells.

Some efforts have been made to incorporate active learning in this
context. Tyson et al. (2021) provided a deep learning algorithm for
fully automated 3D detection of neuronal somata in mouse whole-
brain microscopy images. A traditional image analysis approach, simple
thresholding, was used first to detect cell candidates. The list of candi-
dates was then refined by a deep learning step. Harnessing the power
of deep learning for object classification rather than cell segmentation
at a voxel level speeds up analysis and simplifies the generation of
training data. Instead of annotating cell borders in 3D, experts just need
to annotate cell candidates by the addition of a single demarcation.
The validation of detected cells was via comparison of cell counts per
brain region between the algorithm and the mean of the two expert
counts. This required two experts to annotate all marked cell somata
throughout the brains. The observed discrepancies between the two
experts were noted but not thoroughly examined, ultimately leading
to the adoption of their mean assessments for consensus.

In 2018 there was a competition called the Data Science Bowl
(Caicedo et al., 2019) that used curated training and test data sets.
The host team collected and manually segmented a large data set of

cell images from a variety of microscopy modalities and fluorescent
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Fig. 1. An example of cell detection, as performed by a neuroanatomist and using different segmentation methods. (A) A brain section image of cells labeled by GFP. (B) A two
channel image merging the GFP (green) and the inverted counterstain Neurotrace (gray) images. The red dots correspond to annotations by the anatomist. Note that some of the
large green blobs are not judged to be cells. (C) Final results of a deep learning segmentation method called Cellpose, using just the GFP channel and both channels, respectively.
Cellpose similarly detects most of the labeled cells, but also has high false detection rate, as do most segmentation methods. To remove the false detections reliably, we use a
filter created using boosting. The results are also shown over an image with both channels (D) Intermediate and final results for CellBoost. The intermediate result is for a simple
segmentation method applied only to the GFP channel. Note that all of the human-annotated cells are identified, although there are also a large number of false detections. The
final result uses both GFP and Neurotrace channels and is close to the human annotation in panel B.
markers. The competition challenged participants to develop segmen-
tation methods that could be applied to any 2D light microscopy image
of stained cell nuclei without manual adjustment. Deep-learning-based
models outperformed classical image processing algorithms in terms
of accuracy and usability in this competition. The performance of the
models was evaluated with the F1 score at different Intersection over
Union (IoU) thresholds that served as the primary performance metric.
The best-performing solution used an ensemble strategy with eight
fully connected convolutional neural network architectures. Models
based on the Feature Pyramid Network architecture and the Mask R-
CNN (Region-based convolutional neural network) (He et al., 2017)
architecture also achieved good performance (Caicedo et al., 2019).
Another team followed the approach of the Data Science Bowl team
to prepare datasets, and developed a generalist algorithm, called Cell-
pose (Stringer et al., 2021), for cellular segmentation that can handle
diverse cell shapes and image types without requiring model retraining
or parameter adjustments. The architecture of Cellpose is described,
including the use of simulated diffusion and neural networks to predict
spatial gradients and generate masks. We applied this model to our data
and compared the results with those found with our method (Fig. 1);
we contrast the output of Cellpose with both the initial segmentation
by CellBoost and the refined, final output of CellBoost.
144 
Neural Networks have shown great potential to automate brain
section analysis. However, as NN models function as black boxes, the
models provide little if any insight as to how decisions are made, nor
do NNs give a rigorous measure of confidence in their predictions. It is
thus not possible for a neuroanatomist to understand why the NN made
particular decisions. In this paper, we present an alternative approach
with models that operate in a way more analogous to that of a neu-
roanatomist. These models generate outputs that the neuroanatomist
can interpret and correct.

An important observation regarding locating marked cells is that,
while a typical brain section will contain some hard to identify features
and locations, most of the identifications are relatively easy. This obser-
vation drives our methodology, which uses the computer to assist rather
than replace the human anatomist. We use confidence rated detectors,
which associate a confidence score with each detection. High confi-
dence detections are indentied by the computer while low confidence
detections are passed on to be annotated by human anatomists.

1.4.1. Human factors and work flow
Accurate identification of neuronal cells is crucial for understanding

the functional characteristics of distinct regions within the nervous sys-
tem. However, selecting appropriate strategies for identifying marked
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cells can be challenging, especially for non-expert users, as a con-
sequence of the diversity of sample preparation, staining methods,
microscopy modalities, and other experimental conditions. In particu-
lar, fluorescent labeling comes with undesirable side effects, including
photo-bleaching and background signals (Wang et al., 2011).

We compare the amount of work done by the anatomist when
unaided to the amount of work when aided by confidence rated de-
tections. When using an accurate and confident detection system, the
work of the anatomist reduces to the following steps:

1. Performing quality assurance on confident detections: the
anatomist receives a small sampling of the confident detections
and verifies that they are correct. The sample size depends on
the desired accuracy. The higher the accuracy of the confident
predictions, the smaller the number of example cells that the
anatomist needs to check and annotate to verify that accuracy.

2. Searching for misses: the anatomist looks for marked cells that
were completely missed by the detector.

3. Classifying the unconfident detections: the anatomist anno-
tates all of the low confidence predictions.

Steps 1 and 2 are based on a sampling of the automatically detected
cells and are therefore represent a light workload for the anatomist.
Most of the work of the anatomist is in step 3. We call the ratio between
the unconfident detections and the confident detections the ‘‘effective
work ratio’’. When the effective work ratio is small, the savings in
manual work is large.

2. The problem

To demonstrate our methodology, we focus on a representative chal-
lenging cell detection problem. The input consists of two 3D images of
the same brain, using two florescent markers: a Neurotrace marker that
functions as the counterstain, marks all neurons, and fluoresces in the
blue; and a green fluorescent protein (GFP) marker that is expressed by
cells of interest based on their axonal output projections (Takatoh et al.,
2021, 2013). While GFP is the main identifier of the cells of interest,
the Neurotrace channel is used to eliminate false detections (Tsai et al.,
2009). A typical false detection occurs when there is a GFP signal, but
no indication from Neurotrace that a neuron exists in the location.

Detection of molecularly marked cells is a demanding mental pro-
cess and requires discriminating cell shapes that vary greatly both
within a brain and between brains. The goal is to integrate cues from
the Neurotrace and GFP markers. Our estimate is that it takes a trained
anatomist about 20 s to locate and annotate a single cell. This involves
scanning across the image of GFP marked cells and cross-checking
with the co-aligned Neurotrace channel. For 10,000 marked cells this
corresponds to about 50 h. As annotating cells is tiring, anatomists
typically assign no more than a few hours per day, which means that
manual detection can take weeks. Our goal is to devise a methodology,
consisting of both a computer algorithm and a human workflow, that
exploits the fact that most marked neurons are easy to identify. Thus
automation can significantly reduce the workload on the anatomist
as well as the time it takes to complete annotation of a whole brain.
We develop algorithms that distinguish between ‘‘sure’’ and ‘‘unsure’’
examples, automatically demarcate the sure detections, and identify
‘‘unsure’’ hard examples for further human analysis.

3. Methods

3.1. CellBoost overview

Our system, called CellBoost, is a universal framework constructed
to recognize neurons in any brain region. CellBoost consists of two
main modules (Fig. 2): cell segmentation module and composite de-
tector module. Unlike traditional segmentation methods trying to solve

the problem in one step, we add a recognition step as a filter for
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segmented candidates. Our detector aims to characterize shapes of
cells and make decisions based on cell shape features. In other words,
CellBoost operates similarly to people when recognizing neurons.

As a specific implementation, we apply CellBoost for the automatic
recognition and annotation of molecularly marked premotor neurons
in the mouse brainstem (Takatoh et al., 2021). Our detector achieves
fast adaptation from few samples across different experiments.

3.2. Segmentation

We use adaptive threshold in the cell segmentation module, which
offers the advantages of simplicity and speed. Our adaptive threshold-
ing is conducted with the following steps on the GFP channel of the
imaging data:

1. Convolve the image with a Gaussian filter. Since most of our cells
are smaller than 200 pixels in length, corresponding to 65 μm, we
set the sigma value of the filter to be 100 and the kernel size to
be 401 × 401 (according to the discrete Bessel approximation).
This step can enhance robustness against confounds such as
labeled fine neural processes.

2. Subtract the original from the convolved image.
3. Threshold the difference image with a global constant 𝐶. The

value of 𝐶 is set to be 2000 empirically for our data sets, whose
data type is 16-bit unsigned integer.

4. Use cv2.connectedComponentsWithStats to find connected com-
ponents as cell candidates in the thresholded image (Fig. 1D).

.3. Feature extraction

The result of the segmentation step is a list of candidates, each
efined by matching regions in the GFP and Neurotrace images. Each
andidate is then mapped to 40 features to characterize its shape,
oth in the GFP and the Neurotrace images (Table 1). These features
ave been handcrafted to be an over-complete representation of the
andidates.

In related work (Qian et al., 2024), we used shapes found through
iffusion analysis. In that work we had an exceptionally large data set,
.e., nearly one million example cells per brain region. In contrast, in the
resent case the number of examples, i.e., marked cells along specific
euronal pathways, were too small (∼10,000) to develop features via
n automated technique. Thus we settled on only hand-crafted features.

.4. Sample

Our sample contains four brains derived from the same experimen-
al protocol (Takatoh et al., 2021), all similarly sectioned at 20 μm
hickness, stained, imaged at 0.325 μm by 0.325 μm per pixel, and
ligned with Elastix (Marstal et al., 2016). Sectioning is performed with
he Cryojane technique to preserves the geometry of each section (Chen
t al., 2019; Pinskiy et al., 2015). This approach literally fuses a
ection of brain tissue to a solid glass substrate and thus obviates
ny deformation that would add systematic noise to the data set. The
omata of each cell is counterstained with Neurotrace blue and the cells
etrogradely marked by the expression of GFP, as follows:

• Brain0: premotor jaw neurons expressed GFP through a retro-
grade transport process from the masseter muscle (Takatoh et al.,
2021).

• Brain1 and Brain2: premotor whisking neurons expressed GFP
through a retrograde transport process from the intrinsic vibrissa
muscles.

• Brain3: licking premotor neurons expressed GFP through a ret-
rograde transport process from the genioglossus muscle in the

tongue.
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Fig. 2. (A) Machine learning architecture. The system consists of four stages. The first stage is cell segmentation, which takes as input the GFP image channel and outputs a set of
detection candidates. In the second stage, cell shape features are computed for each candidate. The third step consists of 30 scoring functions, each of which are boosted decision
trees. The structure of a boosted decision tree is shown on the right. The fourth stage, called the composite detector, computes the mean and standard deviation of the 30 scores
generated in stage 3. This mean and standard deviation are used to classify candidates into positive, negative and unsure. (B) Human–machine collaboration workflow.
3.5. Classification and classification confidence

We obtained a total of 100,000 candidate cells through segmenta-
tion performed on the GFP channel of every fifth section in Brain0.
Out of these sections, human annotators demarcated about 2000 can-
didates as ‘‘positive’’ in an unaided mode. Subsequently, the remaining
98,000 unmarked candidates were labeled as ‘‘negative’’ examples.
These 100,000 examples formed the initial training set. Each exam-
ple is then described by a vector of the 40 features (Table 1). We
use a composite detector of 30 individual detectors (Fig. 2). Each
detector is a boosted tree (Chen and Guestrin, 2016) generated us-
ing the same training data but with a different random seed. The
outputs of the individual detectors are combined using bagging-style
averaging (Dietterich, 2000).

Two quantities are computed based on the composite detector.
One quantity is the mean of the scores and the other is the standard
deviation of the scores. Both are indicative of the prediction confidence.
The mean is indicative of the prediction margin, following Schapire and
Freund (2013) (Chapter 5), while the standard deviation is inversely
proportional to the stability across random seeds (Bauer and Kohavi,
1999). We use the mean to partition ‘‘sure’’ from ‘‘unsure’’ examples
and the standard deviation to verify that candidates with low mean
scores are unstable. To compute the classification of a candidate into
‘‘positive’’ and ‘‘negative’’ ‘‘sure’’ detections and ‘‘unsure’’ detections we
use two thresholds. These thresholds are chosen based on the scatter
plots of mean and standard deviation (Fig. 3).
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3.6. Human machine cooperation

The human annotation effort was most extensive with the first of
the four brains, with much smaller efforts required for the other brains.
Some of the sections from the first brain are annotated by a human
‘‘unaided’’, which means that the human has to annotate without the
aid of the computer. Unaided annotation is the most labor intensive
step and requires about 6 to 10 min per brain section.

After the composite detector, trained on the initial training set, is
applied to all sections of the brain, the output is checked by humans
for QC. This analysis is significantly less labor intensive that unaided
annotation and proceeds as:

• Equal size samples are selected from the ‘‘positive’’ and ‘‘unsure’’
subsets and mixed. The candidates labeled ‘‘unsure’’ are too hard
for the machine to call and are left for humans to annotate.
A human then performs annotation to verify that the accuracy
of the ‘‘positive’’ is high. This annotation is more efficient than
the unaided because the computer centers the display at the
candidate cell, and the human has to only answer yes or no.

• The ‘‘sure’’ detections, together with the manual corrections, are
fed back to the training data and used to retrain the detector.

• The ‘‘negative’’ subset is typically much larger than the rest. To
ensure that false ‘‘negatives’’ are rare, the human performs a
search where s/he is looking for undetected cells.
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Fig. 3. Performance of composite detector: Each panel in this figure summarizes the performance of a single composite detector. The horizontal axis corresponds to the average
score and is divided into three regions: Positive, Unsure, and Negative. The vertical axis of the scatter plot corresponds to the standard deviation of detector scores. The dots
correspond to human demarcated examples which labeled by three colors: blue and orange dots corresponds to cells that have been labeled positive and negative in QC, while green
dots correspond to cells that have been detected by a human unaided. In the histogram plot, we show the quantity distribution of these human demarcated examples. Besides, the
bold red curve and the corresponding right axis describe the density of the scores of the candidates. Note there are two orders of magnitude difference between the density of the
negative and the positive candidates. (A,B) Here we observe the improvement in performance on Brain2 before (A) and after (B) retraining on Brain2. Before retraining the number
of machine ‘‘positives’’ included 559 human ‘‘positives’’ and ‘‘unaided’’ and 80 human ‘‘negative’’ detections. After retraining the number of machine ‘‘positives’’ increased to 667
human ‘‘positives’’ and ‘‘unaided’’ and only 23 human ‘‘negative’’ detections. (C,D) Here we observe a small but significant increase in performance on Brain1 maintained after
training on brains other than Brain1. Before retraining the number of machine ‘‘positives’’ included 1185 human ‘‘positives’’ and ‘‘unaided’’ and 28 human ‘‘negative’’ detections.

After retraining the number of machine ‘‘positives’’ increased to 1277 human ‘‘positives’’ and ‘‘unaided’’ and shifted to 30 human ‘‘negative’’ detections.
• The ratio between the sizes of the sure and unsure sets, as noted,
is the ‘‘work saving ratio’’.

Human annotation is reduced to only two tasks by our system:

1. Quality control: Annotating a sample of the 250 ‘‘positive’’
and 250 ‘‘unsure’’ to verify the accuracy of the ‘‘positive’’ and
‘‘unsure’’.

2. Unaided annotation: Annotationg five sections in an ‘‘unaided’’
annotation mode to estimate the false ‘‘negatives’’ of the detec-
tor.

After completing these tasks, the user has a good estimate of the ‘‘false
positive’’ and ‘‘false negative’’ rates. If these are sufficiently low, the
task is done and the ‘‘positive’’ detections are accepted for the neu-
roanatomical analysis. If the QC performance of the composite detector
on a brain is insufficient, then the composite detector is retrained by
using the QC examples together with examples that are high confidence
‘‘positive’’ and high confidence ‘‘negative’’.
147 
4. Results

4.1. Segmentation

Our relatively simple segmentation method manages to catch nearly
all the molecularly marked cells. In general, when parameters are
set to ensure low numbers of false negatives, the number of false
positives is similar across many segmentation methods. Specifically,
our experiments show that the adaptive threshold we use for CellBoost
performs similarly to established methods such as Cellpose (Stringer
et al., 2021) (Fig. 1), a popular cell segmentation method based on deep
learning methods with NNs. Notably, Cellpose requires annotating cell
boundaries to retrain models, a process that demands extensive manual
labor. In practice, Cellpose overlooks some true positive cases when two
or three cells overlap in space or are closely situated (yellow rectangle
in Fig. 1). Our framework uses a simple and efficient segmentation step
followed by a machine learning classification step to detect the true
positives.
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4.2. Machine learning performance

Our composite detector module consists of an ensemble of boosted
decision tree models (Chen and Guestrin, 2016) and classifies cell
candidates as ‘‘positive’’ or ‘‘negative’’ for confident detections, and
‘‘unsure’’ for unconfident detections. We trained and tested six gen-
erations of composite detectors. The initial composite detector begins
its training with Brain0. Here a human anatomist performed unaided
nnotation of every fourth brain section to annotate the GFP expressing
remotor neurons. Subsequently, the detector underwent testing and
etraining on Brain1, Brain2, and Brain3, in that order.

.2.1. Detector accuracy
We conducted two tasks, i.e., quality control (QC) and unaided

nnotation. These tasks require a small sample of manual annotation
nd are efficient to conduct. The quantitative results are:

• Quality Control: It took an average of 108 min to complete QC
of 500 samples, corresponding to 13 s per cell. The error rates of
‘‘positive’’ detections are 4.4%, 12.8% and 23.2%, respectively.
The human disagreement rates of ‘‘unsure’’ detections are 9.2%,
16.8%, and 24.4%, respectively. The error rates of ‘‘positive’’
detection appear correlated to the human disagreement rates of
‘‘unsure’’ detections.

• Unaided Annotation: It took an average of 35 min to assess five
sections with marked cells, corresponding to 5.4 seconds per cell.
The ‘‘false negative’’ rates are 7.8%, 8.3%, 9.0% respectively. The
‘‘false positive’’ rates are 0.03% (12/40 448), 0.70% (43/6550),
0.14% (92/66 242), respectively. Note that they are all rates are
close to 0% because of the large number of ‘‘negative’’ detections.

.2.2. Improvement by retraining
We provide scatter plots based on the mean and standard deviation

f detection scores in our composite detector to visualize the improve-
ent by retraining. The performance of the classification stage is sum-
arized in the plots of Fig. 3 and compared with human performance.
e make the following observations:

• Most of the segmented candidates receive negative scores. This
occurs since most cell candidates correspond to small regions that
are not cells.

• The QC annotation shows a low error rate on the confident
‘‘positive’’ and the confident ‘‘negative’’ classifications.

• The unaided annotation indicates that most of the unaided labels
are classified as ‘‘positive’’. A small fraction are ‘‘unsure’’ and
about 5% are omitted.

• The relationship between the average and standard deviation of
the detector scores shows that, in general, the margin and the
standard deviation are closely related. But when many examples
are annotated, as in Brain1, there are many unstable ‘‘negative’’
examples that are still recognized as confidently ‘‘negative’’.

We make the following observations regarding retraining based on
ur training sets:

• Brain2: This brain was analyzed using detector data from other
brains resulting in a well trained detector (G4). To improve the
performance, a new detector (G5) was trained on the existing data
set with the addition of 500 cells from the QC of Brain2. Compar-
ing panels A and B in Fig. 3, we see that a significant improvement
in performance was achieved, as judged by the increase in number
of human ‘‘positives’’ detected by the machine.

• Brain1: This brain was analyzed using an early detector (G3)
and the performance was compared to that of a later detector
(G6) that was trained on additional brains. Comparing panels
C and D in Fig. 3, we observe that the performance on Brain1
slightly improved by adding training data from additional brains.
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This gives evidence that retraining a detector on additional brains
does not degrade the performance on prior brains, as may occur
when the distribution of training examples differs from that of
test examples.

t is not surprising that this improves performance on additional brains.
ore significant is that the performance on initially analyzed brain

hows an improvement as well.

.3. Feature selection

Our method designed a group of features characterizing cell shapes
nd provided feedback regarding the importance of these features
tilized in cell detection, which is not available in NNs. The relative
mportance of the features that are used in the composite detectors
s depicted in Fig. 4. The importance is defined as the total gain
cross all splits the feature is used in a decision tree model. The
ain observation is that the most important features are low-order
oments of the GFP image channel and the cross-correlation coefficient

defined in Table 1) calculated from the GFP channel as well as from
he Neurotrace channel. As anticipated, features from the Neurotrace
hannel play a pivotal role. Unexpectedly, central moments and other
nvariant moments appear to be less important than raw moments.
his indicates that scale and rotation might significantly influence the
etection process.

Detailed scatter plots for a sample of cell shapes comparing GFP
ross-correlation coefficients to Neurotrace cross-correlation coeffi-
ients (Fig. 4B) and GFP cross-correlation coefficient to second-order
oment 𝑚11 (Fig. 4C). We observe distinct clusters corresponding

o ‘‘positive’’ and ‘‘negative’’ detections, with a few ‘‘unsure’’ detec-
ions situated between the two clusters. Cell shapes similar to the
verage shape of premotor neurons are associated with high GFP cross-
orrelation coefficients. This feature exhibits an outstanding capability
o distinguish between ‘‘positive’’ and ‘‘negative’’ detections. The clus-
ering observed in the scatter plots justifies the large weights of the
orresponding features in Fig. 4A.

.4. Comparative performance

We found the consistence between our automated detections and
uman annotations by checking characteristics of samples in the QC
rocess (Fig. 5). Most fluorescently marked premotor neurons are situ-
ted in the brainstem. Fig. 5A identifies multiple regions in a brainstem
ection with clear and robust fluorescent signals; two prominant regions
re the spinal trigeninal subnuclei oralis (SpVO) and interpolaris (SpVI)
nd the Kolliker-Fuse nucleus (KF), and, as expected, no detection in
he vibrissa facial motonucleus (vFN) (Takatoh et al., 2021). Corre-
pondingly, Fig. 5B shows that our ‘‘positive’’ detections are primarily
ocalized in these two regions. Conversely, ‘‘negative’’ detections are
bserved throughout the entire brain, consistent with the fact that most
ell candidates are not real cells. An area is magnified to show typical
remotor neurons, characterized by apparent GFP-expressing shapes
ccompanied by distinct black cell bodies. As shown in Fig. 5C, our
etector identifies these neurons and categorizes other minor stained
bjects as negative. Three of these detections were selected as sam-
les for QC and there was a consensus among our human annotators
egarding the detection outcomes.

The disagreements between two human annotators is highlighted
n Fig. 6. For one QC sample, an annotation could either be ‘‘positive’’
r ‘‘negative’’, yielding four potential outcomes between two human
nnotators. We separate GFP and Neurotrace image channels to explore
haracteristics of these outcomes.

• A ‘‘sure’’ ‘‘positive’’ example annotated ‘‘positive’’ by both anno-
tators (Fig. 6A). This is a typical premotor neuron, evidenced by a
green-stained shape with clear boundaries and a distinct gray cell
body. Notably, our detector awards it a confident positive score.



K. Qian et al. AI Open 5 (2024) 142–154 
Fig. 4. The important shape features. The boosting algorithm uses as input all 40 features described in Table 1. However, some of the features carry more weight than others.
(A) Display of feature importance, in decreasing order of weight. A box plot is used to show the distribution of the weight across the 30 bagged copies of the detector that are
incorporated into the combined detector. (B,C) Scatter plots of the real shapes of the GFP images of the cells distributed according to two high-weight features. In (B) the horizontal
distribution is according to the across-correlation to the average shape in the GFP channel, while the vertical is the same for the Neurotrace channel. In (C) the horizontal is the
same as (B) while the vertical corresponds to moment 11 (𝑚11).
• A ‘‘sure’’ ‘‘negative’’ example annotated ‘‘negative’’ by both an-
notators (Fig. 6B). Despite the presence of a green-stained shape
in the GFP channel, the corresponding location in the Neurotrace
channel offers no indication that a neuron exists. In response, our
detector assigns this cell candidate a confident ‘‘negative’’ score.

• Two hard cases, with different annotations from two human
annotators (Fig. 6C, D). Both cell candidates exhibit green-stained
shapes with blurry boundaries, while vague signals can be found
in the Neurotrace channel. These traits lead to disagreement be-
tween annotators and also an ‘‘unsure’’ detection by our detector.

Neurotrace Nissl staining is a very useful histological method to fa-
cilitate the identification of cell populations. Our anatomists predom-
inantly utilize the Neurotrace channel to verify the existence of pre-
motor neurons. Therefore, vague signals in this channel can pose
challenges in decision-making. If annotators establish individualized
criteria, their discrepancies might stem from systematic errors. We
observe that nearly 15% to 20% of QC samples for each brain display
divergent decisions from the two annotators (Fig. 6E–G). Strikingly,
of the total disagreement cases, 83 out of 86 (Fig. 6F) and 91 out of
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97 (Fig. 6G) come from the same category, demarcated ‘‘positive’’ by
one human annotator while ‘‘negative’’ by the other. This indicates that
some disagreements may be attributed to a systematic bias, with image
quality playing a pivotal role in the annotators’ judgement.

We checked if examples identified as hard by the algorithm are
also hard for human annotators. We assigned two human annotators
to annotate a sample of hard examples and counted the disagreements.
Our results show a human disagreement rate of about 20%. The human
disagreement rates of ‘‘unsure’’ detections are 12.24%, 22.67%, and
32.21%, respectively, in this test.

The level of agreement between human annotators is studied in
inter-rater experiments (Gellhorn and Carlson, 2013). Inter-rater agree-
ment measures the rate of agreement between marked cells chosen
by different annotators. A common way to quantify the agreement
between two raters is the Cohen’s 𝜅 (kappa) coefficient (McHugh,
2012) .2 The human disagreement rate of about 20% in our experiment

2 𝜅 is computed from two more basic quantities: 0 ≤ 𝑎 ≤ 1 is the fraction of
cases on which the two raters agree, and 0 ≤ 𝑐 ≤ 1 is the fraction of agreements
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Fig. 5. Overview of the performance. (A) A section of the brainstem stained with GFP and Neurotrace from Brain1, where intrinsic vibrissa muscles were injected. Abbreviations:
SpVI = spinal trigeminal subnucleus interpolaris; SpVO = spinal trigeminal subnucleus oralis; KF = Kolliker-Fuse; vFN = vibrissa subregion of facial motor nucleus. (B) Detections
classified as ‘‘positive’’, ‘‘unsure’’, and ‘‘negative’’. This illustrates the spatial distribution of machine detections. (C) A magnified area highlighting machine detections of all
confidence levels. (D–F) Randomly selected samples from detections for QC, with positive (E) and negative (F) annotations provided for clarity. (G–H) A section of the brainstem
stained with GFP and Neurotrace from Brain0, where the masseter muscle was injected. Abbreviations: PCRt = parvocellular region of the reticular formation; PCRt𝛼 = 𝛼 region
of PCRt. (I–J) A section of the brainstem stained with GFP and Neurotrace from Brain3, where the genioglossus muscle was injected. Abbreviations: NST = nucleus of the solitary
tract.
that would occur by chance if the two annotators are statistically independent.
The definition of kappa is 𝜅 = 𝑎−𝑐

1−𝑐
.

If 𝜅 = 1, the anatomists always agree; if 𝜅 = 0, the rate of agreement
corresponds to chance; and if 𝜅 < 0, then the rate of agreement is lower
than chance, i.e. the two anatomists tend to have different opinions. An
interpretation of 𝜅 recommended by Cohen (McHugh, 2012) is: 𝜅 ≤ 0: no
agreement, 0 < 𝜅 ≤ 0.20: none to slight agreement, 0.2 < 𝜅 ≤ 0.40: fair
agreement, 0.4 < 𝜅 ≤ 0.60: moderate agreement, 0.6 < 𝜅 ≤ 0.80: substantial
agreement, and 0.8 < 𝜅 ≤ 1.00: perfect agreement.
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corresponds to 𝜅 = 0.8, on the border of what is considered perfect
agreement and substantial agreement.

5. Discussion

A challenge for current methodology in anatomical studies is the
identification of brain neurons. Classically, this relies on labor intensive
processes. The automation of cell detection has focused on techniques
to completely replace the human annotator, even for data sets with
ambiguously stained cells. Yet this can lead to false detection. The
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Fig. 6. Human performance. (A,B,C,D) Depiction of the four possible outcomes between two human annotators, with the GFP and Neurotrace image channels displayed separately
to underscore their roles in recognition. (E,F,G) Performance summary of the two human annotators across QC tests for three distinct brains, with CDFs plotted for the four
potential outcomes based on average detector scores. For brain 1, the case distribution is as follows: 313 𝐻+

1 𝐻
+
2 , 119 𝐻−

1 𝐻
−
2 , 21 𝐻+

1 𝐻
−
2 and 47 𝐻−

1 𝐻
+
2 respectively. For brain 2,

there are 245 𝐻+
1 𝐻

+
2 , 169 𝐻−

1 𝐻
−
2 , 83 𝐻+

1 𝐻
−
2 and 3 𝐻−

1 𝐻
+
2 respectively. For brain 3, there are 250 𝐻+

1 𝐻
+
2 , 153 𝐻−

1 𝐻
−
2 , 91 𝐻+

1 𝐻
−
2 and 6 𝐻−

1 𝐻
+
2 respectively. Notably, there is

an approximate 15% to 20% disagreement rate between human annotators. The disagreements are largely within the unsure region.
central motivation of our work is to develop tools to leverage human
expertise rather than attempt to replace it. This provides a means to
minimize false detection by focusing the human effort on the small
number of ambiguous cases.

The first novelty of our pipeline is that it partitions the candidate
labeled cells into two classes based on reliability. One is a ‘‘sure’’ or
reliable categorization as ‘‘positive’’ or ‘‘negative’’ based on the assess-
ment of molecular marking. The second is an ‘‘unsure’’ or borderline
category reflecting ambiguity of the molecular marking. The utility of
this approach is that examples that are difficult to classify are relegated
to the ‘‘unsure’’ category. This results in increased accuracy of the
‘‘positive’’ and ‘‘negative’’ classes. Implementing this scheme requires a
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rigorous metric of confidence that is applicable to our algorithm (Bauer
and Kohavi, 1999).

Our study reveals that human annotators disagree with each other
on 10–20 percent of their annotations. Moreover, these disagreements
are concentrated in the candidates that receive an ‘‘unsure’’ label by the
algorithm. This means that the set of examples for which the algorithm
outputs ‘‘unsure’’ has a significant overlap with the set of examples on
which there is disagreement between human annotators. The cells in
the ‘‘unsure’’ set are atypically shaped cells or a result of systematic
biases such as artifacts in the fluorescent channels.

A second novelty of our pipeline is the reduction of manual labor.
We use two annotation protocols. In the first protocol called ‘‘unaided’’,
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the human views a set of molecularly marked sections and is asked to
find all of the marked cells in those sections. The unaided task is the
baseline that is used when no composite detector has yet been trained.
In the second protocol, called ‘‘QC’’, the human is presented with the
location of candidate cells and is asked to annotate them ‘‘positive’’ or
‘‘negative’’.

The processing of the brain consists of two stages, a training stage
and a maintenance stage. In the training stage, the first brain is an-
notated using the unaided protocol. This is a significant task that can
take several weeks. The detections from the unaided protocol are trans-
formed into several thousands positive examples, to which a sample of
undetected candidates are added as negative examples. This training
set is used to train and test the composite detector. In the maintenance
stage the composite detector is applied to the brains sequentially to
split the candidates into ‘‘positive’’, ‘‘negative’’ and ‘‘unsure’’. The main
human task at this stage brains is to perform QC to verify that the
‘‘positives’’ are correct. This is done using a sample of 500 candidates
that are typically annotated by a human in two hours. The outcome
of the QC is either that the accuracy is sufficient or insufficient. For
the former case the ‘‘positive’’ labeled cells are output and added to
the training set. In the latter case the outcome of the QC is added to
the training set to generate a more accurate composite detector. Our
experiments show that one to two QC cycles, hours versus weeks of
work per brain, are sufficient to achieve a high accuracy of machine
labeling of molecularly marked cells.

The system we describe can be extended to count marked neurons
within specific anatomically and/or functionally distinct regions. This
requires the addition of three-dimensional boundaries of the regions,
as may be implemented by systematically mapping the anatomical data
to a known atlas (Wang et al., 2020; Chen et al., 2019; Franklin and
Paxinos, 2019; Jones et al., 2011; Kleven et al., 2023). Here our focus
was on the application of the Boosting method to cell identification,
for which we used four brains with retrogradely marked premotor
neurons starting from individual muscles involved in orofacial active
sensation (Takatoh et al., 2021). This led to a tool that leveraged human
expertise rather than attempted to replace them.

Our pipeline can be applied to other stain combinations of molecu-
lar markers, brain regions, and species. The benefit of using our pipeline
is that only one brain has to be labeled ‘‘unaided’’, requiring weeks of
manual work. Other brains of the same type require only a few cycles
of QC, each of which can be completed in two hours. We hope that
other neuroscience laboratories would find our pipeline useful with the
increased popularity of high-throughput microscopy.

Code availability

This software is fully open-source, along with our custom visual-
ization and annotation tools built upon Neuroglancer, a WebGL-based
software.

Cell detector: https://github.com/ActiveBrainAtlas2/cell_extractor
Neuroglancer: https://github.com/ActiveBrainAtlas2/neuroglancer
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Appendix. Methods details

A.1. Boosting and sparse representations

An important part of the design of any learning algorithm is finding
a representation of input feature vectors that captures the aspects
that are most relevant for the classification task. In some situations
deep Neural Networks can find internal representations autonomously,
without human intervention. However, a close look at the design of
some successful deep networks, such as alpha-Go (Silver et al., 2017)
reveals that high level of human expertise was used to design the
features used by the Neural Network.

Boosting is a popular learning algorithm with a deep theoretical
foundation (Schapire and Freund, 2013). Boosting combines a large
number of so-called ‘‘weak’’ rules to construct a single ‘‘strong’’ rule.
Here we follow the ‘‘kitchen sink’’ approach to feature selection. This
approach starts by the human constructing a very large number of
candidate rules. The boosting algorithm performs both feature selection
i.e. finding the rules that provide significant information about the
labeled cell, as well as feature weighting and combination, i.e. finding
how to combine the informative features to predict the labeled cell.

One of the most popular application of boosting combines boosting
with weak rules that are trees. There are several open-source implemen-
tations of this combination. The most popular are XGBoost (Chen and
Guestrin, 2016) and LightGBM (Developers, 2023). These packages are
very efficient. They run, without a GPU, about 100-times faster than a
DNN learning algorithm using a GPU.

In general, increasing the number of features or rules increases the
danger of over-fitting, especially when the number of labeled examples
is small as is the case here. However, as shown in Schapire and Freund
(2013) (Chapter 5), the number of features has little influence on over-
fitting. Rather, it was shown, both theoretically and experimentally,
that large normalized margins guarantee low over-fitting even if the
number of features goes to infinity. Neural Networks do not enjoy this
guaranteed resistance to over-fitting; in many cases deep NNs do not
overfit, but the theory explaining this is at its infancy.

A.2. Brain preparation

All brains were prepared as in Ref. Takatoh et al. (2021) under pro-
cedures approved by the Institutional Animal Care and Use Committee
(IACUC) at the Massachusetts Institute of Technology in compliance
with the United States Department of Agriculture (USDA) Animal Wel-
fare Act (AWA) regulations and the United States National Institutes of
Health (NIH) Office of Laboratory Animal Welfare (OLAW) regulations
governing the use of vertebrate animals. Sectioning and imaging of

https://github.com/ActiveBrainAtlas2/cell_extractor
https://github.com/ActiveBrainAtlas2/neuroglancer
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Table 1
Feature importance in detectors of composite detector G6.

Rank Feature name Definition Importance in detectors (Median)

1 𝑚11 A image moment: ∑𝑥
∑

𝑦 𝑥𝑦𝐼(𝑥, 𝑦) 49 160.54
2 𝑋𝑐𝑜𝑟𝑟_𝐺𝐹𝑃 Mean of cross-correlation to the averageshape of positive cells in the GFP channel 6735.25
3 𝑚10 A image moment: ∑𝑥

∑

𝑦 𝑥𝐼(𝑥, 𝑦) 3352.64
4 𝑚12 A image moment: ∑𝑥

∑

𝑦 𝑥𝑦2𝐼(𝑥, 𝑦) 2981.99
5 𝑚01 A image moment: ∑𝑥

∑

𝑦 𝑦𝐼(𝑥, 𝑦) 2922.80
6 𝑚21 A image moment: ∑𝑥

∑

𝑦 𝑥2𝑦𝐼(𝑥, 𝑦) 2087.11
7 𝑒𝑛𝑒𝑟𝑔𝑦_𝑁𝑡𝑏 Integral of squared image gradientsin the Neurotrace channel 1937.21
8 𝑋𝑐𝑜𝑟𝑟_𝑁𝑡𝑏 Mean of cross-correlation to the averageshape of positive cells in the Neurotrace channel 1437.84
9 𝑚𝑢02 A image moment: ∑𝑥

∑

𝑦(𝑦 − �̄�)2𝐼(𝑥, 𝑦) 1279.08
10 𝑚20 A image moment: ∑𝑥

∑

𝑦 𝑥2𝐼(𝑥, 𝑦) 1249.88
11 𝑒𝑛𝑒𝑟𝑔𝑦_𝐺𝐹𝑃 Integral of squared image gradientsin the GFP channel 1147.04
12 ℎ0 The first Hu moment 841.12
13 Contrast_Ntb 𝐼𝑖𝑛 (𝑁𝑒𝑢𝑟𝑜𝑡𝑟𝑎𝑐𝑒)−𝐼𝑎𝑙𝑙 (𝑁𝑒𝑢𝑟𝑜𝑡𝑟𝑎𝑐𝑒)

𝐼𝑖𝑛 (𝑁𝑒𝑢𝑟𝑜𝑡𝑟𝑎𝑐𝑒)+𝐼𝑎𝑙𝑙 (𝑁𝑒𝑢𝑟𝑜𝑡𝑟𝑎𝑐𝑒)
746.79

14 Contrast_GFP 𝐼𝑖𝑛 (𝐺𝐹𝑃 )−𝐼𝑎𝑙𝑙 (𝐺𝐹𝑃 )
𝐼𝑖𝑛 (𝐺𝐹𝑃 )+𝐼𝑎𝑙𝑙 (𝐺𝐹𝑃 )

731.51

15 ℎ1 The second Hu moment 610.77
16 𝑛𝑢20 A image moment: 𝑚𝑢20∕𝑚2

00 355.44
17 𝑚𝑢11 A image moment: ∑𝑥

∑

𝑦(𝑥 − �̄�)(𝑦 − �̄�)𝐼(𝑥, 𝑦) 346.37
18 Height Height of a candidate 312.76
19 𝑛𝑢11 A image moment: 𝑚𝑢11∕𝑚2

00 296.03
20 𝑚𝑢20 A image moment: ∑𝑥

∑

𝑦(𝑥 − �̄�)2𝐼(𝑥, 𝑦) 260.27
21 𝑛𝑢30 A image moment: 𝑚𝑢30∕𝑚

5∕2
00 258.57

22 area Area of a candidate 256.55
23 𝑚𝑢03 A image moment: ∑𝑥

∑

𝑦(𝑦 − �̄�)3𝐼(𝑥, 𝑦) 239.08
24 ℎ2 The third Hu moment 232.17
25 𝑚𝑢21 A image moment: ∑𝑥

∑

𝑦(𝑥 − �̄�)2(𝑦 − �̄�)𝐼(𝑥, 𝑦) 229.82
26 ℎ3 The forth Hu moment 225.75
27 𝑛𝑢03 A image moment: 𝑚𝑢03∕𝑚

5∕2
00 225.30

28 ℎ5 The sixth Hu moment 222.02
29 ℎ6 The seventh Hu moment 214.95
30 𝑚03 A image moment: ∑𝑥

∑

𝑦 𝑦3𝐼(𝑥, 𝑦) 213.31
31 𝑚𝑢12 A image moment: ∑𝑥

∑

𝑦(𝑥 − �̄�)(𝑦 − �̄�)2𝐼(𝑥, 𝑦) 208.33
32 ℎ4 The fifth Hu moment 203.76
33 𝑛𝑢02 A image moment: 𝑚𝑢02∕𝑚2

00 202.05
34 𝑚𝑢30 A image moment: ∑𝑥

∑

𝑦(𝑥 − �̄�)3𝐼(𝑥, 𝑦) 200.54
35 𝑛𝑢21 A image moment: 𝑚𝑢21∕𝑚

5∕2
00 198.11

36 𝑛𝑢12 A image moment: 𝑚𝑢12∕𝑚
5∕2
00 188.40

37 𝑚30 A image moment: ∑𝑥
∑

𝑦 𝑥3𝐼(𝑥, 𝑦) 175.03
38 Width Width of a candidate 125.28
39 𝑚02 A image moment: ∑𝑥

∑

𝑦 𝑦2𝐼(𝑥, 𝑦) 99.96
40 𝑚00 A image moment: ∑𝑥

∑

𝑦 𝐼(𝑥, 𝑦) 10.83
processed brains was performed at the University of California, San
Diego as described in Ref. Chen et al. (2019).

A.3. Cell segmentation parameter selection

As described in Section 3.2, our segmentation method consists of
two steps. First we use a high-pass filter to reduce long range variations,
then we use a fixed threshold to find connected regions, or patches. This
threshold was set to 2000 in our system, here we justify this choice.

Fig. 7 depicts the false positive and the false negative rates of
the system as a function of the threshold value. The false positive
rate remained consistently low across the range of thresholds. On the
other hand the false negative rate varies significantly and reached the
minimum at 1800. Our chosen value of 2000 is only slightly worse than
the global minimum. The reason for the discrepancy is that the value
2000 was earlier in the development process and was not changed to
avoid over-fitting.

All cell images are zero-padded to create uniformly sized cell
patches for efficient handling in the subsequent processing steps. Since
most of our cells are smaller than 200 pixels in length, we set the patch
size to 200. Setting the patch size to a smaller value cuts off parts of
the large cells and causes errors, while larger patch sizes significantly
increase the computation time.
153 
Fig. 7. The performance of our detector at various thresholds in the cell segmentation
process. The false positive rate and false negative rate were used to measure the
performance.
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