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Device and method for inducing vascular injury and/or blockage in an animal model

Abstract

Ultrashort laser pulses are used to induce photodisruptive breakdown in vasculature in an animal to
controllably produce hemorrhage, thrombosis or breach of the blood-brain barrier in individual,
specifically-targeted blood vessels. Damage is limited to the targeted vessels such that neighboring
vessels exhibit no signs of vascular damage, including vessels directly above and directly below the
targeted vessel. Ultrashort laser pulses of lower energy are also used to observe and quantify the
baseline and altered states of blood flow. Observation and measurement may be performed by
TPLSM, OCT or other known techniques, providing a real-time, in vivo model for the dynamics and
effects of vascular injury.
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Claims

What is claimed is:

1. A method of producing spatially localized injury to vasculature in a live animal, the method
comprising: targeting vasculature in three dimensions for photodisruption; and focusing ultrashort
laser pulses on the targeted vasculature to produce localized photodisruption.
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2. The method of claim 1, further comprising observing physiological parameters in the animal.
3. The method of claim 1, wherein the step of targeting comprises using a microscope objective.

4. The method of claim 3, wherein the microscope objective has a numerical aperture within a range of
0.1to0 1.3.

5. The method of claim 3, wherein the microscope objective is a component of a two-photon laser
scanning microscope.

6. The method of claim 5, further comprising observing the target vasculature using the microscope
simultaneously with the photodisruption.

7. The method of claim 1, further comprising observing the target vasculature using optical coherence
tomography simultaneously with the photodisruption.

8. The method of claim 1, wherein the step of targeting comprises using optical coherence
tomography.

9. The method of claim 1, wherein the laser pulses have an energy adapted to drive a nonlinear
interaction within the target vasculature.

10. The method of claim 1, wherein the laser pulses have pulsewidths in a range from 10
femtoseconds to 100 picoseconds.

11. The method of claim 1, further comprising preparing the animal to provide optical access to the
vasculature via a transparent window formed in the animal.

12. The method of claim 11, wherein the window is adapted to provide access for insertion of
electrical probes.

13. The method of claim 1, further comprising injecting the animal with a substance for labeling the
blood stream.

14. The method of claim 13, wherein the substance is a water-soluble fluorescent tracer or
fluorescently-labeled erythrocytes.

15. The method of claim 1, further comprising measuring blood flow in the targeted vasculature.

16. The method of claim 1, wherein the localized injury comprises vascular damage of a type selected
from among thrombosis, hemorrhage and breach of the blood-brain barrier.

17. A method for in vivo modeling of vascular disorder, comprising: preparing an animal for optical
access to vasculature; and targeting vasculature in three dimensions for photodisruption; and focusing
ultrashort laser pulses on the target vasculature to produce localized photodisruption, wherein the laser
pulses have an energy adapted to drive a nonlinear interaction within the target vasculature.

18. The method of claim 17, wherein the step of targeting comprises using a microscope objective.
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19. The method of claim 18, wherein the microscope objective has a numerical aperture within a range
of 0.1 to 1.3.

20. The method of claim 18, wherein the microscope objective is a component of a two-photon laser
scanning microscope.

21. The method of claim 20, further comprising observing the target vasculature using the microscope
simultaneously with the photodisruption.

22. The method of claim 17, further comprising observing the target vasculature using optical
coherence tomography simultaneously with the photodisruption.

23. The method of claim 17, wherein the step of targeting comprises using optical coherence
tomography.

24. The method of claim 17, further comprising observing physiological parameters within the animal
using one or a combination of two-photon laser scanning microscopy, magnetic resonance imaging,
functional magnetic resonance imaging, multi-spectral intrinsic imaging, positron emission
tomography, time resolved light scattering, Doppler flowmetry, and optical coherence tomography.

25. The method of claim 17, further comprising observing physiological parameters within the animal
using post-mortem histology.

26. The method of claim 17, wherein the laser pulses have pulsewidths in a range from 10
femtoseconds to 100 picoseconds.

27. The method of claim 17, wherein preparing the animal comprises forming a window for optical
access to the target vasculature.

28. The method of claim 17, wherein preparing the animal comprises injecting the animal with a
substance for labeling the blood stream.

29. The method of claim 28, wherein the substance is a water-soluble fluorescent tracer or
fluorescently-labeled erythrocytes.

30. The method of claim 17, further comprising measuring blood flow in the targeted vasculature.

31. The method of claim 17, wherein the localized photodisruption comprises vascular damage of a
type selected from among thrombosis, hemorrhage, and breach of the blood-brain barrier.

32. A method for observing vascular disease or injury in real time, comprising: preparing an animal for
optical access to vasculature; and targeting vasculature in three dimensions for photodisruption;
focusing ultrashort laser pulses on the target vasculature to produce localized photodisruption, wherein
the laser pulses have an energy adapted to drive a nonlinear interaction within the target vasculature;
and observing physiological parameters of the animal before, during and after photodisruption.

33. The method of claim 32, wherein the step of targeting comprises using a microscope objective.
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34. The method of claim 33, wherein the microscope objective has a numerical aperture within a range
of 0.1 to 1.3.

35. The method of claim 33, wherein the microscope objective is a component of a two-photon laser
scanning microscope.

36. The method of claim 35, further comprising observing the target vasculature using the microscope.
37. The method of claim 33, further comprising observing the target vasculature using optical
coherence tomography.

38. The method of either claim 36 or claim 37, wherein the step of observing is performed
simultaneously with photodisruption.

39. The method of claim 33, wherein the step of targeting comprises using optical coherence
tomography.

40. The method of claim 33, wherein observing comprises using one or a combination of two-photon
laser scanning microscopy, magnetic resonance imaging, functional magnetic resonance imaging,
multi-spectral intrinsic imaging, positron emission tomography, time resolved light scattering, Doppler
flowmetry, and optical coherence tomography.

41. The method of claim 33, wherein observing after photodisruption comprises using post-mortem
histology.

42. The method of claim 33, wherein the laser pulses have pulsewidths in a range from 10
femtoseconds to 100 picoseconds.

43. The method of claim 33, wherein preparing the animal comprises injecting the animal with a
substance for labeling the blood stream.

44. The method of claim 43, wherein the substance is a water-soluble fluorescent tracer or
fluorescently-labeled erythrocytes.

45. The method of claim 33, further comprising measuring blood flow in the targeted vasculature.

46. The method of claim 33, wherein the localized photodisruption comprises vascular damage of a
type selected from among thrombosis, hemorrhage, and breach of the blood-brain barrier.

Description

FIELD OF THE INVENTION
The present invention relates to a device and method for inducing vascular injury and/or blockage in

animal models for the study of vascular disease, and more particularly an optical device and method
for producing laser-induced hemorrhage, thrombosis, and breach of the blood-brain barrier in
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specifically targeted individual blood vessels with micrometer precision.
BACKGROUND OF THE INVENTION

With the average lifespan and age of the population on the increase, vascular diseases are guaranteed
to strike growing numbers within the population. Among such diseases are neurovascular disorders,
which encompass those conditions that result in cerebrospinal ischemia, infarction, and hemorrhage.
To provide an example, every year, over 700,000 people in the United States suffer a stroke, and
roughly a quarter of those strokes are fatal. Stroke is therefore the third leading cause of death in the
United States. In addition, a large segment of the elderly population is debilitated by dementia.
Recently, neuronal vascular disorders, including microstrokes (lacunes), microbleeds, and
neurovascular disease have been linked with many forms of dementia, such as Alzheimers's disease
and vascular dementia. (Heye and Cervos-Navarro 1996; del Zoppo and Mabuchi 2003; Wardlaw,
Sandercock et al. 2003) At present, options for treatment of stroke remain few and of limited efficacy
despite years of basic and clinical research. Continued progress in stroke research depends critically on
animal models that allow stroke to be studied at various stages, from initial changes in physiological
parameters (e.g., blood flow and blood oxygenation) to neuronal death, behavioral impairment, and
recovery. (del Zoppo 1998; Lipton 1999; del Zoppo and Mabuchi 2003). Most ischemic stroke models
developed to date produce either large-scale injury, or a multitude of small-scale injuries at
uncontrolled sites. Most hemorrhagic stroke models developed to date produce either large-scale
hemorrhage or systemic injury. These existing models do not allow the production of small-scale,
localized injury or blockage to specifically targeted vessels at depth. Such a paradigm is particularly
crucial for the study of the effects of ischemic microstrokes and microbleeds.

Existing in vivo animal models of stroke fall into one of five broad categories: 1) occlusion of large
vessels by ligation or filament insertion; 2) occlusion of a multitude of microvessels by injection of
embolus into the bloodstream; 3) hemorrhagic damage (vessel rupture) by injection of a
tissue-degrading substance; 4) model of hemorrhage by injection of whole or fractionated blood; and
5) optically-induced thrombosis of blood vessels by linear absorption of light. There is no reported
technique that is capable of producing both thrombotic and hemorrhagic stroke to specific individual
vessels deep within the same preparation.

In the case of mechanical occlusion, current techniques involve the blockage of blood flow by a
variety of methods. These methods include ligation of large arteries (e.g., carotid artery) (McBean and
Kelly 1998))], ligation of smaller arteries (Wei, Rovainen et al. 1995; Wei, Erinjeri et al. 2001), and
insertion of a filament into a large artery for the occlusion of a main arterial branch. (e.g., the middle
cerebral artery) (Tamura, Graham et al. 1981; Chen, Hsu et al. 1986; Busch, Kruger et al. 1998).
Artery ligation results in neuronal injury to large, millimeter or larger sized regions of the rodent brain
and is a model for major infarcts.

As a model for microstrokes, microspheres (Lyden and Hedges 1992; Lyden, Zivin et al. 1992; Lyden,
Lonzo et al. 1997) or preformed clots (Kudo, Aoyama et al. 1982; Overgaard 1994; Krueger and
Busch 2002) can be injected into an artery, leading to occlusion of smaller vessels downstream from
the injection site, but without allowing specific individual vessels to be targeted. As a result,
physiological changes cannot be correlated to specific local disruptions.

Hemorrhages can be induced by systemic or local injections of agents such as collagenase (Rosenberg,

Mun-Bryce et al. 1990)], or tissue plasminogen activator (tPA) (Dijkhuizen, Asahi et al. 2002) to
weaken vessels or disrupt the blood-brain barrier. Using such models to evaluate potential treatments
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is difficult because the effects of these agents can be spread over large, uncontrolled volumes. In
addition, the effects of the agent cannot be isolated to the vasculature alone, because the agent can
directly affect the surrounding tissue.

Alternatively, direct injection of whole or fractionated blood into the extracellular space has been
reported as a model for hemorrhagic stroke (Deinsberger, Vogel et al. 1996; Hickenbottom, Grotta et
al. 1999). The spatial localization is limited by diffusion of the injected materials. Additionally, this
model is deficient in other aspects of natural hemorrhagic stroke, including the vascular and
endothelial response. Current models of hemorrhage cannot be used as models of small hemorrhage,
which are necessary for studies of vascular dementia.

For the case of optically-induced thrombosis, previous work utilized green light to excite an
intravenously injected photosensitizer. When excited by exposure to light, photosensitizers generate
singlet oxygen (Pooler and Valenzeno 1981), which attacks the membranes of the vessel walls
(Herrmann, 1983). Damage to the vessel walls then starts a natural cascade of activation that results in
the formation of a clot in all exposed vessels (Watson, Dietrich et al. 1985; Krammer 2001). In earlier
work, transcranial illumination with diffuse green light exposed blood vessels over a wide lateral and
axial extent, 1-3 millimeters in diameter (Watson, Dietrich et al. 1985; Dietrich, Ginsberg et al. 1986;
Dietrich, Ginsberg et al. 1986).

More recently, work has been done using green light that is tightly focused through a microscope
objective, constraining the lateral dimension of exposure at the focal plane to approximately one
micrometer (Schaffer, Ebner et al. 2003; Schaffer, Ebner et al. 2003; Schaffer, Tsai et al. 2003),
allowing individual vessels to be clotted. While very powerful, this focal photothrombotic stroke
model has one major drawback: localized clotting can be achieved only in surface vessels. This
limitation is due to the single-photon excitation of the photosensitizer molecule. When focused on a
deep-lying vessel to induce a clot, all vasculature lying above that vessel is also clotted, preventing the
use of this model for studying the effect of localized thrombosis in individual vessels at depth.

Alternatively, highly absorbed wavelengths of light (e.g., 10.2 microns from a CO.sub.2 laser) are used
extensively in neurosurgery to simultaneously remove neuronal and vascular tissue while concurrently
cauterizing the remaining portions of the removed blood vessels. The mechanism of damage relies on
the linear absorption of the laser light by water and other tissue constituents and, therefore, does not
require the presence of an exogenous photosensitizer. The high absorption coefficient of the tissue at
these wavelengths results in substantial energy absorption and thermal buildup within the targeted
tissue. The concurrent thermal diffusion out of the targeted volume results in an extended region of
collateral thermal damage.

Current medical treatment for stroke requires therapeutic intervention within hours of the stroke to be
optimally effective. Full understanding of the mechanisms and efficacy of these interventions therefore
requires real-time visualization of stroke with high spatial and temporal resolution. Previously,
real-time visualization and quantification of the effects of vascular damage on blood flow and blood
vessel morphology have been performed using technologies, such as laser Doppler flowmetry
(Dirnagl, Kaplan et al. 1989; Nakase, Kakizaki et al. 1995), magnetic resonance imaging (MRI)
(Hoehn-Berlage, Norris et al. 1995; Busch, Kruger et al. 1998), positron emission tomography (PET)
(Marchal, Young et al. 1999), computer-aided tomography (CAT), fluorescent video microscopy (Wei,
Rovainen et al. 1995; Wei, Erinjeri et al. 2001; Ishikawa, Sekizuka et al. 2002), or confocal laser
scanning microscopy (Seylaz, Charbonne et al. 1999; Pinard, Nallet et al. 2002). With the exception of
the light microscopy, these techniques are limited to determining average blood flow over
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100-1000-micrometer-sized areas. While such averages may be relevant for determining the degree of
ischemia or hemorrhage, they provide no input on changes in flow and morphology in individual
vessels, save for the largest branches of the cerebral vasculature. Fluorescent video microscopy allows
individual vessels to be studied, but is limited to the observation of surface vessels only, while
confocal microscopy allows vessels up to approximately 50 .mu.m beneath the surface to be
visualized. These observation techniques have allowed quantitative characterization of changes in
blood flow velocity and blood vessel dilation as a result of large-scale ischemia produced by surgical
occlusion of arteries and arterioles (Wei, Rovainen et al. 1995; Wei, Craven et al. 1998; Seylaz,
Charbonne et al. 1999; Wei, Erinjeri et al. 2001; Pinard, Nallet et al. 2002). These studies could not,
however, address local changes in blood flow and vessels near an isolated occlusion. Recently,
fluorescent video microscopy was used to study vessel dilation after photochemically-induced clots in
individual arterioles, but the results were limited to surface vessels and blood flow could not be
resolved (Ishikawa, Sekizuka et al. 2002).

Another modality of analysis for current models of induced stroke is based on the observation of
behavior deficits in the subject and post-mortem histology of the targeted and collateral tissue regions.
These widely utilized methods are performed hours to days after the onset of damage and, therefore,
are unable to elucidate the dynamics and mechanisms involved in the propagation of injury due to
vascular damage.

The study of microstrokes and microhemorrhages requires microscopic resolution, coupled with the
ability to either precisely target or locate the microscopic vascular disturbance within the brain
volume. Using nonlinear microscopy, local changes in blood flow due to isolated occlusions can be
studied and quantified in real-time.

The use of nonlinear optical effects to provide contrast for image formation has revolutionized
microscopy over the past decade. Many nonlinear effects are now used for imaging, including second-
and third-harmonic generation, Coherent Anti-Stokes Raman scattering, the Kerr effect, and
multi-photon excited fluorescence.

One non-linear technique is two-photon laser scanning microscopy, or "TPLSM" (Denk, Strickler et
al. 1990; Denk 1994), which allows fluorescence imaging with intrinsic optical sectioning deep inside
scattering specimens with diffraction-limited resolution. Briefly, an ultrashort laser pulse is tightly
focused inside a specimen tagged with a fluorescent molecule that does not linearly absorb at the
wavelength of the ultrashort laser. At the laser focus, the laser intensity can become high enough to
induce two-photon excitation of the fluorescent molecule. Because the excitation is nonlinear, this
fluorescence is only produced in the focal volume where the laser intensity is high. The fluorescence
intensity is then recorded as the position of the laser focus is scanned throughout the specimen forming
a three-dimensional image. In addition, because photoexcitation occurs only at the laser focus, there is
significantly reduced bleaching of fluorescent dyes and photodamage to the sample as compared to
linear imaging techniques.

TPLSM is especially well suited to in vivo imaging deep into highly scattering specimens, such as
brain. In widefield or confocal fluorescence microscopy, the fluorescence must be imaged to a camera
or to a pinhole, respectively. Scattering of the fluorescence leads to an unwanted background in
widefield microscopy and to decreased signal strength in confocal microscopy. In TPLSM, however,
because all the fluorescence originates from the focal volume, it need only be detected in order to
contribute to the signal, not imaged. Thus fluorescence that is scattered on the way to the detector still
contributes to image formation, and does not produce unwanted background. This immunity to
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scattering of the fluorescence allows imaging deep into scattering samples. The imaging depth is
ultimately limited by scattering of the ultrashort laser beam. In practice, one can image up to 500
micrometer beneath the cortical surface in rat (providing access to layers 1-4 of the cortex), without
loss of image resolution. For neuronal tissue with labeling throughout the tissue, a theoretical limit for
imaging depth is approximately 1 millimeter.

TPLSM further provides means for measuring and quantifying the velocity, i.e., direction and speed,
and flux of red blood cell (RBC) movement and plasma flow in vivo under acute as well as chronic
conditions. These measurements make use of either fluorescently labeled plasma, in which case cells
in the blood, such as RBCs and leukocytes, appear as dark objects on a bright background, or the use
of fluorescently labeled RBCs.

The above-described technologies provide means for forming and observing strokes. However, these
techniques for induction of stroke are incapable of producing hemorrhage, thrombosis, and breach of
the blood-brain barrier targeted to specific individual blood vessels. Further, no technique is currently
available for the production of surface or subsurface vascular injury localized with micrometer
precision, thereby permitting the disruption of the smallest vessels, i.e., capillaries. Accordingly, the
need remains for a device and method with such capabilities.

SUMMARY OF INVENTION

The present invention provides a device and method for optically inducing precision vascular injury
and/or blockage deep in the tissue of an animal. No exogenous agents are required to facilitate the
injury, as the laser light interacts directly with the endogenous tissue and fluids. In an exemplary
embodiment, a tightly focused beam of high intensity, ultrashort, laser pulses drives nonlinear
interactions between the laser light and the tissue at the focus of the beam, producing photodisruption
at the targeted vasculature. These nonlinear interactions result in both direct photoionization of the
tissue at the focus and thermoelastic damage to the local surrounding tissue. As a result of these
damage mechanisms, a localized hemorrhage, thrombosis, or breach of the blood-brain barrier is
formed within a single targeted vessel, providing an in vivo animal model for vascular injury or
blockage. Because of the nonlinear nature of the laser-tissue interaction, photodisruption can be
targeted deep to the surface of the tissue without extensive collateral damage to tissue surrounding the
targeted vessel.

According to the inventive method for production and observation of localized photodisruption,
optical access to vasculature of the peripheral and central nervous system is obtained through a
window. For the case of brain vasculature, an optically transparent cranial window consisting of either
a coverslip-sealed craniotomy, a thinned-skull preparation, or an intrinsically thin skull is utilized. In
the preferred embodiment, an intravenous injection of fluorescent water-soluble tracer is used to
visualize target vessels and quantify the blood flow through the cranial window. In the preferred
embodiment, two-photon laser scanning microscopy (TPLSM) is used, however, other observation
procedures may also be used.

According to the present invention, ultrashort laser pulses are used to induce photodisruptive
breakdown in vasculature thereby controllably producing hemorrhage, thrombosis, as well as breach of
the blood-brain barrier in individual, specifically targeted blood vessels. Ultrashort laser pulses of
lower energy are also used to image and quantify the baseline and altered states of blood flow. Such
analysis provide a real-time, in vivo model for the dynamics and effects of vascular injury, such as
occurs in stroke. Breakdown is produced in individually targeted vessels with approximately 100 to
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10000 nanojoule pulses. Induced thrombi are found to be stable past 6 hours. Thrombosis has been
demonstrated in vessels ranging in diameter from 5 to 50 micrometers. Hemorrhagic damage has been
demonstrated in vessels ranging in diameter from 5 to 1000 micrometers. Three-dimensional
localization of damage has been demonstrated by optical sections that were taken before and after the
vascular damage has been induced, and from histological sections of post-mortem tissue. In both cases
the sections spans the entire three-dimensional volume of interest. Blood vessels neighboring the
targeted vessel showed no signs of vascular damage, including vessels directly above and directly
below the targeted vessel.

The inventive device and method are not limited to applications for modeling of stroke or other
vascular injury of the brain, but can be used for the study of vascular disease in other organs,
including, but not limited to heart, liver and kidney. In general, any disease involving disruption of
normal vascular function can be modeled and studied using the device and method of the present
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, both as to its organization and manner of operation may be further understood by
reference to the following description taken in conjunction with the following drawings wherein:

FIG. 1 is a schematic diagram of an exemplary arrangement for the optics and optomechanics of the
inventive device, including scan optics, detectors, and sample stage;

FIG. 2 is a schematic diagram of laser sources for a first embodiment of the device, wherein two
coupled laser sources are used for imaging and photodisruption;

FIG. 3 is a schematic diagram of laser sources for a second embodiment of the device, wherein two
separate laser sources are used for imaging and photodisruption;

FIGS. 4a and 4b are diagrammatic views of a cross-section of tissue before and during exposure to
photodisruption, respectively. FIGS. 4c, 4d, and 4¢ are diagrammatic views of the tissue showing a
hemorrhage, a breach of the blood-brain barrier, and a thrombosis, respectively, induced by
photodisruption.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The following detailed description provides examples of application of the device and method of the
invention to modeling of stroke or other vascular injury in the brain. These examples are not intended
to be limiting. Applications of the invention go beyond those relating to simulation and study of
stroke, extending to the study of vascular disease in other organs, including, but not limited to, heart,
liver and kidney, and other areas of the body, for conditions such as peripheral vascular disease.

Nonlinear optical induction of vascular injury and/or blockage is performed using high intensity,
ultrashort laser pulses. Nonlinear microscopy is used to monitor and quantify changes of physiological
parameters (e.g., blood flow, or blood oxygenation) in real-time.

Photodisruption relies on nonlinear interaction between the laser light and endogenous tissue
constituents to generate either thrombosis, breach of the blood-brain barrier resulting in extravasation
of blood plasma but not red blood cells, or hemorrhage resulting in extravasation of both blood plasma
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and red blood cells. This method does not require the presence of an exogenous photosensitizer. Use
of laser wavelengths that are neither highly scattered nor highly absorbed by the tissue allow for both
imaging and photodisruption to be targeted deep to the tissue surface, localized in three dimensions,
and performed with negligible thermal damage to the surrounding tissue. Photodisruption is instigated
by multiphoton and avalanche ionization. The resulting damage is from either direct vaporization, if
the tissue is located in the focal volume where the laser energy is nonlinearly absorbed, or mechanical
disruption by either a shock wave or cavitation bubble. By locating the laser focus at different
positions inside or on the vessel wall, a variety of vascular injuries can be produced. When the laser
pulse is focused on the wall of a vessel, the cells comprising the wall are vaporized, producing a
hemorrhage. When the laser pulse is focused into the lumen of the vessel, the vessel wall is most likely
damaged by the shock wave, potentially triggering the clotting cascade and formation of a thrombus,
and/or leading to hemorrhage or breach of the blood-brain barrier.

In the preferred embodiment, targeting of vessels, as well as imaging and quantification of
physiological parameters are performed by TPLSM. Other techniques for observation of the effects of
photodisruption, which may be used in lieu of or in combination with TPLSM include optical
coherence tomography (OCT), magnetic resonance imaging (MRI), functional magnetic resonance
imaging, multi-spectral intrinsic imaging, positron emission tomography (PET), time resolved light
scattering, Doppler flowmetry, and surface imaging of blood vessels with wide-field videography.

The major optics and optomechanics of the modified two photon laser scanning microscope are
illustrated in FIG. 1. As illustrated, the device broadly includes multiple laser source/electro-optics
assemblies 10 and 12, a modified two-photon laser scanning microscope 20, and an animal preparation
mount 30 attached to a translation stage 40. The laser sources for the two beams of laser pulses have
pulse parameters appropriate for nonlinear imaging and photodisruption, respectively. In the preferred
embodiment, the first source assembly 10 is capable of producing roughly 100 femtosecond, 720 to
900 nanometer laser pulses with energies of up to approximately 10 nanojoules at a repetition rate of
76 megahertz for the purpose of nonlinear microscopy. A second source assembly 12 is capable of
producing roughly 100 femtosecond, 800 nanometer laser pulses with energies of up to approximately
1 millijoule at a repetition rate of 1 kilohertz. Alternatively, the laser sources can be any other laser
systems or combinations of systems appropriate for nonlinear microscopy and photodisruption,
respectively. The two-photon laser scanning microscope 20 is adapted for concurrent delivery of a
second beam line for photodisruption. The animal preparation mount 30 is designed to stably hold the
animal preparation 32 for optical access to the vasculature. A translation stage 40 and kinematic mount
allow positioning to micrometer accuracy. Auxiliary equipment can be included for monitoring and
maintaining homeostatic conditions for the animal preparation.

Referring to FIG. 2, in a first embodiment, the laser source for TPLSM and the laser source for
photodisruption are separate but coupled laser sources. In this first exemplary embodiment, laser
oscillator 110 is a Titanium: sapphire (Ti: sapphire) laser with a pulse width of approximately 100
femtoseconds. For purposes of the present invention, pulse widths may fall in the range of around 10
femtoseconds to the 100 picoseconds. Appropriate lasers are commercially available, for example,
under the trademark Mira.RTM. 900 (Coherent, Inc., Santa Clara, Calif.). Laser oscillator 110 is used
both as the imaging source for a modified two-photon laser scanning microscope, and as a seed for a
multi-pass optical amplifier 140 through a electrooptic pulse picker 130. An example of an appropriate
amplifier for use in the inventive device is that of Kapteyn and Murnane (Backus, Bartels et al. 2001).
Such systems, producing pulses with a duration of approximately 100 femtoseconds and energies up to
approximately 1 millijoule at a repetition rate of approximately 1 kilohertz, are commercially
available, for example, under the trademark Hurricane. TM. (Positive Light, Inc., Los Gatos, Calif.).
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The amplified beam from the multi-pass optical amplifier serves as a photodisruption beam for
vascular injury. The pump laser 100 for the laser oscillator is a continuous wave (CW) solid state laser,
such as the 10 W Verdi-V10 laser available from Coherent, Inc. The pump laser 160 for the optical
amplifier 140 is a pulsed solid state laser. Beam diagnostics 122, 142 include a power meter,
spectrometer, and autocorrelator, which receive light from the optical oscillator or amplifier via
beamsplitters 120, 144. Intensity controls 132, 146 and mechanical shutters 134, 148 are provided
independently for each beam path 136, 152. A half-wave plate 150 is placed in the photodisruption
beam path 152 to rotate the polarization of the beam for effective polarization mixing with the
oscillator (imaging) beam 152 in the modified microscope.

In a second embodiment, a separate laser source assembly can be used for each of TPLSM and
photodisruption of subsurface vessels, as illustrated in FIG. 3. In this alternative embodiment, the first
laser/electrooptics assembly 10 includes a photodisruption laser 210 pumped by a separate pump laser
200 to produce the ablation beam 222 of high energy pulses with or without the use of an optical
amplifier. As in the first embodiment, beamsplitter 212 diverts a portion of the beam 222 to beam
diagnostics 214, which includes a power meter, spectrometer, and autocorrelator. Intensity control 216
and mechanical shutter 218 are provided in the beam path 222. A half-wave plate 220 is placed in the
beam path 152 to rotate the polarization of the beam for effective polarization mixing with the imaging
beam 270 in the modified microscope.

In the separate, second laser/electrooptics assembly 12, imaging beam 270 is produced in a similar
manner to that of oscillating beam 136 of the first embodiment. Imaging laser 240 is pumped by laser
230. Beam diagnostics 252 receives light from the imaging laser 240 via beamsplitter 250. Intensity
control 262 and mechanical shutter 264 are provided in beam path 270. A half-wave plate 150 is
placed in the amplified beam path 152 to rotate the polarization of the beam for effective polarization
mixing with the oscillator (imaging) beam 152 in the modified microscope.

Referring again to FIG. 1, the modified two photon laser scanning microscope includes a pair of scan
mirrors 14 together with a scan lens 16, a tube lens 18, and an objective 22, which together serve to
raster the oscillator beam across the animal preparation 32 for imaging. The objective 22 has a high
numerical aperture (NA) in the range from 0.1 to 1.3 NA, which is typically available with standard
water-immersion objectives. The choice of the numerical aperture is based on considerations that tie
the NA of the microscope objective 22 to the working distance, laser penetration depth and resolution
at a given location of tissue. The amplified ultrashort pulses for photodisruption (from source 12) are
combined into a common optical path with the imaging beam by polarizing beamsplitter 36.

The detection optics comprise a dichroic mirror 24, a mixture of colored glass and interference filters
28, collection lens 26, and detectors 34, all receiving photons from the animal preparation 32 through
the objective lens 22. A digital image acquisition and storage system 70 is provided to store sections in
the form of digital images. Such a system 70 comprises a computer system and suitable acquisition
software and imaging software to visualize and quantify the blood flow in the animal preparation.
Additional software and/or hardware can be included to provide positioning control and coordination
of the translation stage 40, allowing precise positioning and assignment of reference coordinates to the
stored images. Additional optics can be easily inserted for simultaneous detection and discrimination
in multiple wavelength bands.

In the preferred embodiment, targeting of specific vessels and visualization of blood flow can be

performed by two-photon laser scanning microscopy at multiple adjacent fields of view. Then, the
animal can be removed and precisely repositioned in the apparatus using a kinematic mount for
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observation using, in one preferred embodiment, optical coherence tomography (OCT), a technique
developed in the early 1990s which enables non-invasive, high resolution in vivo imaging in turbid
biological tissue (see, e.g., Fujimoto, 2003). Additional or alternative observation and vessel targeting
modalities may be used, including magnetic resonance imaging (MRI), functional magnetic resonance
imaging, multi-spectral intrinsic imaging, positron emission tomography, time resolved light
scattering, Doppler flowmetry, or surface imaging of blood vessels with wide-field videography. As an
alternative to repositioning, the animal can remain in a fixed position and the instrumentation moved
into position for viewing. In this latter embodiment, the TPLSM assembly would be mounted on an
appropriate translation stage or platform in a system that includes one or more additional types of
observation instrumentation. The second instrument, also mounted on a stable translation stage, can be
positioned for observing the animal.

The head-fixed mount 30 is constructed from a metal plate 62 which is directly attached to the animal
preparation 32. The metal plate 62 is mounted onto metal rods 64 which attach to a kinematic
baseplate 66 that can be removed and replaced with high precision. The kinematic base plate 66
attaches to a translation stage 40 that can be connected to system controller 70 to provide computer
control to deliver micrometer position accuracy.

Additional details of the components of the TPLSM and examples of commercial sources for the
components of the TPLSM are provided in Chapter 6 ("Principles, Design and Construction of a
Two-Photon Laser-Scanning Microscope for In Vitro and In Vivo Brain Imaging", by P. S. Tsai, et al.)
of In Vivo Optical Imaging of Brain Function, ed. Ron D. Frostig, 2002, CRC Press, pp. 113-171,
which is incorporated herein by reference.

For practicing the method of the present invention, mode-locked laser 10 produces a train of ultrashort
laser pulses capable of being focused to peak intensities exceeding approximately 10.sup.10
W/cm.sup.2 appropriate for nonlinear microscopy. This train of pulses is directed to laser scanning
microscope 20 and focused at the animal preparation 32 for the purpose of monitoring physiological
parameters, such as blood flow, blood oxygenation, or cellular physiology. A subset of the pulses is
diverted by pulse picker 130 to optical amplifier 140 to produce ultrashort laser pulses capable of
being focused to peak intensities exceeding approximately 10.sup.13 W/cm.sup.2 as appropriate for
photodisruption. This beam of amplified pulses is also focused at the animal preparation 32 for the
purpose of producing photodisruption by nonlinear interaction with the endogenous tissue
constituents. Due to the high-order dependence of these nonlinear interactions on laser intensity, the
probability of interaction is negligible everywhere except in the immediate vicinity of the focus of the
laser beam. Sub-femtoliter focal volumes can be achieved, resulting in localization of vascular damage
down to a single specific blood vessel, and imaging with sub-micrometer resolution.

Three categories of vascular injury--thrombosis, breach of the blood-brain and hemorrhage--can be
selectively produced by optimization of three parameters: the pulse energy, the number of pulses
applied, and the targeting location within the vessel. Targeting the pulses to the vessel wall results in
direct photoionization of the cells comprising the vasculature. Targeting the pulses to the vessel lumen
results in photoionization of the fluid within the lumen, leading to a cavitation bubble and a shock
wave which propagates to the vessel wall, and causes injury. The injury resulting from these
mechanisms may be severe enough to degrade the blood-brain barrier, trigger a natural clotting
cascade, or rupture the vessel. Because the amplitude of produced shock waves falls off rapidly with
propagation distance, collateral damage to surrounding tissue is minimal.

An animal is prepared for optical access to neuronal vasculature by performing a craniotomy and
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sealing the opening with a coverslip and 1% agarose in artificial cerebral spinal fluid (ACSF). Small
openings were left around one or more edges of the coverslip to permit insertion of small electrical
probes to contact or penetrate the brain tissue for the purpose of electrical stimulation and/or recording
(Svoboda, Denk et al. 1997). The animal was then placed into a head-fixed mount 30 at the base of the
apparatus. Alternatively, optical tracking (e.g, using fiber laser delivery), can be used for animal
preparations that are not fixed to a stationary mount. Auxiliary equipment may be provided at the
animal preparation to monitor and maintain homeostatic conditions, as well as provide sensory
stimulation.

Fluorescent labeling of the blood plasma allows targeting of the vessels as well as observation of
blood flow using TPLSM. The blood plasma is labeled by intravenous injection of a water-soluble
fluorescent tracer. Blood flow is visualized by monitoring the motion of erythrocytes or other blood
stream constituents, which appear as dark objects moving against a fluorescent blood plasma
background. Imaging of the neuronal blood flow is performed and maps of the vascular connectivity
are generated with micrometer resolution.

Quantified maps of blood flow are generated by analysis of the collected images. Quantitative blood
flow analysis consists of calculating the streak angle of contrast-generating objects in the bloodstream
visualized by TPLSM. Alternatively, two-point correlation of intensity changes along the length of the
imaged vessel can be used to quantify the blood flow.

Vascular damage is induced in a subpopulation of the mapped blood vessels by tightly focusing a
controlled number of photodisruptive laser pulses in those blood vessels. Either hemorrhage,
thrombosis, or breach of the blood-brain barrier can be produced without requiring the presence of an
exogenous photosensitizer in the blood stream. Additionally, multiple types of vascular injury can be
induced to different targets within the same animal preparation. After vascular injury has been
induced, more imaging of neuronal blood flow is performed, and changes in blood flow are quantified.
Further, any other physiological parameter amenable to fluorescence microscopy can also be observed
with TPLSM, e.g., intracellular Ca.sup.2+ concentration, Reduced Nicotinamide Adenine
Dinucleotide/Nicotinamide Adenine Dinucleotide (NADH/NAD.sup.+) ratio, or the transmembrane
voltage. Post-operative observations are used to correlate the induced vascular injury and real-time
observed physiological changes to behavioral deficits or post-mortem histology.

FIGS. 4a and 4b provide simulated images of a cross-section of tissue 300 before and during exposure
to the photodisruptive pulses, respectively. Microscope objective lens 22 is positioned over the desired
target area for irradiation on the animal by movement of one or both of the kinematic mount 66 and
translation stage 40. In FIG. 4b, the photodisruption beam 222 is focused by objective lens 22 onto
target vasculature 400. FIGS. 4c, 4d, and 4e are images of the tissue showing a hemorrhage 402, a
breach of the blood-brain barrier 404, and a thrombosis 406, respectively, all of which were induced
by photodisruption.

EXAMPLE 1

Sprague-Dawley rats, 100-300 grams in weight, were prepared in order to provide optical access to
neuronal blood flow. The animals were anesthetized with urethane and craniotomies, roughly 4
millimeters by 4 millimeters in extent, were performed over parietal cortex to create a cranial window.
The dura was removed and a metal frame 62 was glued to the skull. The exposed brain surface was
covered with 1.0 to 1.5% low gelling temperature agarose(W/V) in artificial cerebral spinal fluid
(ACSF). A glass coverslip was clipped in place on top of the agarose to maintain pressure over the
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brain and to provide optical access. Water soluble fluorescein-isothiocyanate dextran was injected
intravenously to label the blood plasma for the purpose of targeting and imaging vessels. Alternatively,
a thinned-skull preparation can be performed to gain optical access to the neuronal blood flow. The
metal frame is then mounted to a kinematic mount and computer-controlled translation stage at the
base of the apparatus via metal rods. Homeostatic conditions are monitored and maintained by
auxiliary equipment at the base of the apparatus, including, thermometer, heat blanket, oxygenated gas
flow, electrocardiogram, and blood pressure monitor. Additional auxiliary equipment (e.g., mechanical
whisker stimulator) at the base allows for sensory stimulation during the course of the experiments.

TPLSM was used to visualize vessels and select a target for photodisruption. Alternative means for
labeling include the injection of fluorescently-labeled erythrocytes, microscopic exogenous fluorescent
probes or addition of a stain to the blood stream that localizes to endogenous cellular components. For
observation of the vessel walls, a lipophilic stain can be used for labeling.

Once a target has been selected, a stack of TPLSM optical sections was taken, spanning the area
around the target from the surface to roughly 300 micrometers below the surface to visualize the
three-dimensional organization of regional blood vessels. Multiple adjacent image stacks can be taken
to extend the field of observation. A rapid time series of line scans were taken of a target blood vessel
as well as surrounding blood vessels for quantification (measurement of velocity, flux and mass flux)
of blood flow, as discussed further below.

To initiate vascular disruption, a 1-kilohertz train of laser pulses of roughly 100-femtosecond
pulsewidth with a wavelength of 800-nanometers were focused into the lumen of the vessel or at the
surface of the vessel while continuously monitoring with TPLSM. After a train of approximately 10
laser pulses, the irradiated area was observed for any vascular changes. The laser pulse energy started
at .about.50 nanojoules. If no vascular changes were observed, the laser power was increased and
irradiation repeated. Vascular disruption occurred at energies of around .about.0.3 microjoules.

The morphology of vessels can be monitored at a frame rate of up of several hertz, while the flow
velocity in vessels can be monitored at kHz rates by scanning only a single line along the length of the
vessel. In some cases, velocity of RBCs was measured in the target and surrounding vessels. To
measure RBC velocity in a single vessel with TPLSM, the imaging laser is scanned repeatedly along
the length of a vessel. This line-scan results in a space-time image, in which the motion of the RBCs
through the vessel is recorded as dark streaks. Using the time between successive line-scans and length
of each line-scan, the velocity of the RBC can be computed by an automated process.

At the end of the imaging experiments (5 to 6 hours post-clot formation), the animal is administered
an overdose of Nembutal and transcardially perfused with phosphate buffered saline (PBS) followed
by 4% paraformaldehyde(W/V) in PBS. The brain is removed and equilibrated with solution of 30%
sucrose(W/V) in PBS. The brain is sectioned (50 micrometer thick sections) on a freezing, sliding
microtome and serially collected in PBS with 0.2% azide(W/V).

The expression of cFOS by immunolocalization has been linked to cell stress and damage associated
with ischemia and also with exposure to ultraviolet laser radiation. Control experiments were
performed to eliminate the possibility of cFOS upregulation in response to the surgical preparation or
two-photon imaging process. In these control experiments, cFOS immunostaining was only scattered
and sparse. Next, the induction of cFOS expression was used as an indicator of cell stress in response
to photodisruptively induced vessel injury or blockage. In contrast to the control experiments, cFOS
upregulation is induced by local photodisruption of blood flow in the vicinity of targeted vessels. This
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provides corroborative evidence for downstream ischemic cellular pathology following
photodisruption-induced injury to blood vessels.

Additionally, immunodetection of infused fluorescein reveals sites of blood-brain barrier breach. The
large molecular size of the intravenously injected dye (2 megadalton fluorescein-isothiocyanate
dextran) resulted in exclusion of dye from most of the brain parenchyma. Sections stained with
anti-fluorescein antibody demonstrated only restricted sites with marked parenchymal labeling within
several hundred micrometers of the cortical surface. This staining outlined neurons and in some cases
appeared to also be incorporated where plasma extravasation was visualized in vivo during
photodisruptive production of hemorrhage or breach of the blood-brain barrier.

EXAMPLE 2

Using the experimental set-up (animal preparation, system configuration and measurement) described
in Example 1, photodisruption was performed on vessels in the cortex ranging in depth from the
surface to .about.175 micrometers in depth. The resulting vascular disruption was found to divide into
three categories, which are listed below in order of the approximate severity and size of the damage to
the microvessel:

Thrombosis--Near the threshold energy for vascular disruption and with a limited number of pulses,
photodisruption results in extremely limited extravasation of plasma. TPSLM images were taken at
various time points before, during and after vascular photodisruption. In an exemplary experiment, the
vessel is intact before irradiation. After irradiation with 10 pulses of 0.3 microjoules, a small amount
of extravasated plasma could be visualized as fluorescence outside the vessel walls, however, the
vessel lumen remained unobstructed. Extravasated fluorescence continued to spread for several
seconds after irradiation, but remained spatially confined to within 5 micrometers of the vessel. After a
second irradiation with 10 pulses at 0.3 microjoules, thrombosis began within several seconds. In the
targeted vessel, unmoving, dark areas indicated the coalescence of RBCs and perhaps platelets. Bright
stationary areas indicate plasma within the vessel that may be stagnant and without RBCs. A clot that
was formed was observed to be stable for the entire period of observation (2 hours).

Breach of the Blood-Brain Barrier--Following photodisruption, a weakening of the blood-brain barrier
can allow the extravasation of fluorescein-labeled plasma to fill a volume around the targeted vessel.
Penetration of the plasma into the extra-vascular space was not necessarily limited to regions
immediately adjacent to the target vessel. In exemplary experiments, fluorescent dye penetrates the
parenchyma up to .about.30 micrometers radially from the target vessel. In some instances, leakage
through the blood-brain barrier was accompanied by the formation of a thombotic clot within the
vessel. In other cases, blood flow remained unobstructed within the target vessel throughout
irradiation, extravasation and subsequent observation. RBC velocity remained unchanged by the
irradiation and subsequent vessel leakage.

Hemorrhage--Greater laser energies and/or increased numbers of pulses, lead to a larger disruption of
the targeted vessel. In an exemplary experiment, a microvessel 125 micrometers below the cortical
surface was observed before and after irradiation with 10 pulses of 1 microjoule energy. Initial
fluorescein leakage was rapid, reaching a diameter of 60 micrometer within 1 second. The plasma
continued to expand, stabilizing to a volume of about 0.002 mm.sup.3. In addition to fluorescently
labeled plasma, RBCs were pushed into the parenchyma and were visualized with white light
microscopy immediately after photodisruption.
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Ultrashort laser-induced photodisruption comprises electron-ion plasma, shock wave, and cavitation
bubble formation, as described above. Vascular disruption can be caused by any one of these
optically-triggered events. It is believed that when the laser is focused directly on the vessel wall,
ionization removes portions of the endothelial cell. When the laser is focused into the vessel lumen,
ionization occurs in blood plasma, or perhaps in a passing red blood cell. In this case, the vessel walls
are likely not directly affected by the ionization because the ionization volume is small relative to the
vessel lumen, and the products of ionization are swept downstream by the flowing blood. However,
the shock wave and the cavitation bubble that follow optical breakdown may locally disrupt
endothelial cells. The size and strength of the shock wave and cavitation bubble depend on the total
amount of laser energy, so that the extent of injury to the vasculature and the tissue can be modulated
by the laser power and number of applied pulses.

At low energies, near the threshold for vascular disruption, a weak shockwave and small cavitation
bubble transiently injure the endothelial cells. The injury may be severe enough to degrade the
blood-brain barrier, allowing the observed extravasation of fluorescein-labeled plasma, but the leakage
is transient. The injury to the endothelial cells may be sufficiently mild that the cells recover, or the
endogenous clotting cascade may seal the breach quickly. In some cases, the injury can also trigger
thrombosis that completely blocks the vessel, but in other cases, the lumen remains unobstructed.

At higher laser energies, the shockwave may induce sufficient damage to the endothelial cells to
disrupt the blood-brain barrier for longer times and over larger areas, allowing bodies such as RBCs to
invade the parenchyma. At even higher energies, the shockwave is sufficiently strong that it can
completely rupture the vessel and possibly induce direct damage to the tissue surrounding the vessels.
These larger vascular disruptions result in a hemorrhage that develops into an intra-parenchymal
hematoma, a clotted mass that includes RBCs. It may be noted that even these larger vascular
hemorrhages are still three-dimensionally localized, as tissue surrounding the hemorrhage is not
disrupted. This tissue immediately bordering the vascular injuries will be at the greatest risk for
infarction and consequently, the most interesting to study.

Extravascular tissue remains relatively unaffected by the photodisruption in the vessel for several
reasons. Because only a small amount of total energy is delivered by the laser, collateral damage by
thermal mechanisms is insignificant. The ionization plasma is confined to volume less than 1
micrometer in diameter. The pressure induced by the shockwaves falls off with increasing distance,
thereby limiting the total volume affected by the shock. With appropriate selection of energy, this
volume is comprised mostly of the vessel lumen and the endothelial cells. Vascular cells and tissue
which wrap completely around the target vessel, e.g., endothelial cells and basement membrane, are
preferentially affected by the photodisruption when compared to cells which simply abut the vessel.
Because vascular cells wrap around the source of the shockwave, the pressure wave translates into
tensile stress which can rupture cells.

The above-described device and method of the invention provides means for producing injury to
single, selected microvessels in the depth of the cortex using ultrashort laser-induced photodisruption.
This model produces three types of vascular damage: thrombosis, breach of the blood-brain barrier,
and hemorrhage. Thrombosis of single vessels may be a good model of local blockages of the
microvasculature that lead to small infarcts in the brain. Previous models of lacunes and microinfarcts
involved the systemic injection of small clotting agents such as microspheres or other emboli. The
locations of the occlusions are random and unpredictable, and infarcts must be located post-mortem by
the tedious inspection of the entire brain after histological sectioning. Using the inventive method and
model, single microvessel occlusions can be placed in a predictable manner in the cortex, allowing the
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subsequent cellular and physiological events to be systematically studied. Further, the inventive
method permits real-time monitoring of physiological parameters amenable to fluorescence
microscopy (e.g. blood flow, intracellular Ca.sup.2+ concentration, Reduced Nicotinamide Adenine
Dinucleotide/Nicotinamide Adenine Dinucleotide (NADHINAD.sup.+) ratio, or the transmembrane
voltage.). Similarly, vessel ruptures can be investigated in controlled experiments. Microvessels can be
ruptured throughout the cortex to model the nature of hemorrhages that are detected in human brains
by MRI. A third modality of vascular injury produced by the inventive device and method is the
transient disruption of the blood-brain barrier leaving an intact vessel. The present invention can be
used to study the effects of leaking blood plasma and its constituents into the neuronal parenchyma
with and without ischemia.

By coupling real-time TPLSM with ultrashort laser photodisruption, the occlusions and hemorrhages
in vessels can be monitored as they are formed. In addition, RBC velocities in the intact vessels
surrounding an occluded microvessel can be measured.

The device and method of the present invention provide novel means for observing in real time and
furthering the understanding of mechanisms and treatment of stroke and vascular dementia in the
brain, and of vascular disease in other parts of the body, using animal models. The ability to induce
and study vascular disorders in real time will provide means for evaluating treatments which can
prevent, limit and/or reverse the damage caused by stroke and similar vascular insults in the brain and
other organs within the body.

Other embodiments and modifications of the present invention will occur readily to those of ordinary
skill in the art in view of these teachings. Therefore, this invention is to be limited only by the
following claims which include all such other embodiments and modifications when viewed in
conjunction with the above specification and accompanying drawings.
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