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Neuronal computation in the mammalian brain is energetically costly, 
and the brain has limited reserves of energy1,2. A solution to this 
dilemma calls for a vascular system that functions as a reliable, per-
vasive supply chain. With regard to the cortical mantle, this system 
begins with the great cerebral arteries that emanate from the circle 
of Willis and source a planar network of highly interconnected pial 
arterioles that span the surface of the mantle3. The inherent multitude 
of paths for flow to any given branch allows the surface network to 
distribute blood in a manner that is relatively insensitive to blockages 
in one or a few of the branches of the network4,5. Furthermore, the 
distribution can be dynamically shifted toward regions of heightened 
electrical activity and concurrent metabolic load6,7. The surface net-
work is connected to an underlying, three-dimensional network of 
microvessels by radially directed penetrating arterioles. The micro-
vascular network is drained by penetrating venules that return blood 
to the surface of cortex, where it empties into the central sinus to 
complete the supply chain. Although the microvascular network 
brokers the bulk of the exchange of metabolites and gases between 
brain cells and the blood stream, the morphometry of microvessels 
and the topology of this network remain largely uncharted. Yet this 
information is fundamental to an understanding of neurovascular 
coupling in normal and diseased states8–10 and to the interpretation 
of functional brain images11,12.

What ideas guide the discussion of brain microvasculature? The con-
cept of the neurovascular module emerged from functional imaging 
studies, where sensory input that activates a region of cortex leads to a 
concomitant increase in the flow of blood in an overlapping volume13.  
In the case of the rodent vibrissa system, neuronal activity in vibrissa 
primary sensory (vS1) cortex forms an array of clusters, denoted as 
cortical columns or barrels, in which each column receives afferent 

input primarily from a specific vibrissa on the face of the animal14.  
Thus, cortical columns and neurovascular modules might be 
expected to be synonymous in vS1 cortex. In fact, it has been sug-
gested that neurovascular modules may be arranged as largely 
autonomous modules, each sourced by one or more penetrat-
ing arterioles and drained by one or more penetrating venules15. 
Support for this view comes from experiments in which flow 
through an individual penetrating arteriole is blocked5,16,17, lead-
ing to the cessation of blood flow in a roughly cylindrical region of  
surrounding microvessels18.

We challenged the notion of a neurovascular module. We exploited 
the overarching columnar features of vS1 cortex and used large-scale 
automated histology to acquire and vectorize data from tissue in which 
all vessels and all neuronal and non-neuronal nuclei were labeled19,20. 
We asked the following questions. What is the form of the short-range 
interconnectivity among microvessels? Can the loci of cortical columns 
be predicted from the topology of the cortical vasculature, the calcu-
lated patterns of flow in the vessels or the spatial location of penetrat-
ing vessels that source and sink blood? Is the spatial dependence of 
functional signals, based on changes in blood oxygenation, consistent 
with the observed vascular anatomy? Are calculated regions of flow 
predictive of the pathologies observed with microinfarctions to the 
vascular supply? If so, how do these calculated regions compare with 
those measured in response to single vessel occlusions16,17,21,22?

RESULTS
Two forms of data sets were obtained. The first were sets that encompass 
12–46 cortical columns, span the full depth of vS1 cortex and extend 
into the white matter (n = 4 mice, 2–3 mm3 in volume; Fig. 1a–c).  
All vessels were labeled with a fluorescent gel under conditions 
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What is the nature of the vascular architecture in the cortex that allows the brain to meet the energy demands of neuronal 
computations? We used high-throughput histology to reconstruct the complete angioarchitecture and the positions of all neuronal 
somata of multiple cubic millimeter regions of vibrissa primary sensory cortex in mouse. Vascular networks were derived from  
the reconstruction. In contrast with the standard model of cortical columns that are tightly linked with the vascular network, 
graph-theoretical analyses revealed that the subsurface microvasculature formed interconnected loops with a topology that was 
invariant to the position and boundary of columns. Furthermore, the calculated patterns of blood flow in the networks were 
unrelated to location of columns. Rather, blood sourced by penetrating arterioles was effectively drained by the penetrating 
venules to limit lateral perfusion. This analysis provides the underpinning to understand functional imaging and the effect of 
penetrating vessels strokes on brain viability.
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that preserved the size of the vessels, all 
nuclei were labeled with a DNA stain and 
neuronal nuclei were further labeled with 
antibody to NeuN, a pan-neuronal marker 
(Online Methods). The second form of data 
set encompasses all of vS1 cortex as well as 
the representation of microvibrissa, typi-
cally 60 to 70 columns, and spans from the 
pia to approximately layer 5a of vS1 cortex (n = 4 mice; Fig. 1d).  
We used intrinsic optical imaging23,24 through a transcranial  
window18 to map the responses for 20–30 vibrissa before histology 
(Online Methods). All vessels and all nuclei were labeled as above, 
and we imaged the full extent of vS1 cortex, albeit over a limited 
depth. Additional mice (n = 4) provided auxillary data.

Vessels were automatically identified and vectorized as center 
points, of degree 2 or 3, that were connected with centerlines that 
had a length and an associated radius19,25,26 (Fig. 1d). Two exceptions 
were that the centerlines of some surface vessels were traced by hand 
and the labeling of all penetrating vessels was visually confirmed. 
Consecutive centerlines were joined together to form the vectorized 
substantiation of individual vessels that preserved the tortuosity of 
the brain vasculature. The vectorized vessel was abstracted as an edge, 
whose length is the total length of the vessel and whose radius is the 
median radius associated with all centerlines (Emn; Fig. 1e). Different 
edges predominantly meet as vertices of degree 3; that is, a fraction 
of 0.93 triads and <0.07 crosses (Vm; Fig. 1e). All vectorized vessels 
of the data set of one mouse formed a weighted graph27 of edges and 
vertices, which we refer to as an angiome.

In addition to vessels, we vectorized the location of all cell nuclei19. The 
boundaries of cortical columns were based on the increased density of 
neuronal nuclei at the level of layer 4 (Fig. 1a,c), and, for purposes of ana-
lysis, columns are taken to exist only across layer 4 (Online Methods).

The microvasculature forms a highly interconnected network
We focused first on the statistical properties of the microvasculature. 
These vessels had a broad distribution of lengths between 10 and  
200 µm, with a median length of 50 µm, and both median  
and mean radii near 2 µm (Fig. 2a). We observed no edges that spanned 
hundreds of micrometers between cortical columns or the nearly  
1-mm depth of cortex (101,992 edges across 4 brains). The radii, which 
have the greatest effect on flow, were essentially constant as a function 
of depth into cortex (Fig. 2b). Consistent with past data for mice19, 
monkeys12 and humans28, there was a broad variation in the density of 

the vasculature as a function of depth into cortex (Fig. 2c) that differed 
from the sharper variation in neuronal density (Fig. 2c).

We then examined the network properties of the microvasculature. 
These formed a multitude of loops, with an average of eight edges 
across the compact loops (Fig. 2d). The prevalence of closed paths 
was consistent with a rebalancing of flow observed after blockage of 
a single microvessel29. For comparison, the pial vasculature, which 
is confined to two dimensions, forms loops with an average of four 
edges5, in which analogous rebalancing of flow occurs after an occlu-
sion of a single surface vessel4,30.

How does the interconnectivity reveal itself? If we assign a fluid resist-
ance to each edge and view the microvasculature as a three-dimensional 
resistive network, we would expect that the resistance across pairs of 
vertices in the network should asymptote to a constant value as we span 
pairs that are progressively further apart31. In contrast, this resistance 
should increase linearly for one-dimensional networks and logarithmi-
cally for two-dimensional networks31. We used a previously described 
empirical model32 (Fig. 2a,e), which corrects the Hagen-Poiseuille law 
for the granular nature of blood, to assign resistances on the basis of 
measured radius and length of each vessels (Online Methods). We then 
calculated the network resistance across pairs of vertices33 (Fig. 2f) and 
found that resistance asymptoted as a function of the Euclidean separa-
tion distance (Fig. 2g). This implies that the microvasculature forms a 
highly interconnected irregular lattice in all directions. An asymptotic 
network resistance of 0.4 P µm−3 was reached by ~150 µm (Fig. 2g), 
which corresponds to thrice the median length of the microvessels 
(Fig. 2a). Numerically, the asymptotic resistance is consistent with a 
network that has the same topology and identical resistance values of 
1.6 P µm−3 at each edge. For comparison, the average resistances from 
the surface to the depth of layer 4 were 0.1 and 0.2 P µm−3 for penetrat-
ing arterioles and venules, respectively.

Connectivity does not covary with columnar boundaries
A highly interconnected network may have systematic variations 
in connectivity. We asked whether such variations clustered in the 

Figure 1 Examples of the vectorized data sets. 
(a,b) Example of data obtained throughout the 
full depth of cortex and extending into the white 
matter. Surface and penetrating arterioles are 
colored red, venules blue and the borders of 
cortical columns are denoted by a golden band. 
A selected slice from this data set is shown to 
illustrate the extent of penetrating vessels (b). 
(c) Example of data obtained through the upper 
half of cortex from mice used for transcranial 
imaging of intrinsic optical signals; see Figure 6. 
(d) Schematic of the make-up of edges in terms 
of individual centerlines, each with length Imn

k( ), 
where m and n label the vertices and k labels the 
consecutive centerlines between vertices, and 
radius rmn

k( ), computed as the average between  
the measured radii at vertices m and n.  
(e) Schematic of labeling of edges (Enm) and 
vertices (Vm) used for topological analyses.
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 boundaries of individual cortical columns, and addressed this issue with 
a previously described graph-theoretic analysis34 (Online Methods). 
This analysis seeks to form communities of vertices in which the con-
nections in a community are relatively more frequent than chance, but 
the connections between different communities occur at a level less 
than chance.

Qualitatively, the communities derived for our angiomes had no 
clear relation with the location and spatial extent of cortical columns 
(Fig. 3a–d). They were distributed along the entire depth of cortex 
with a density that peaked outside of layer 4 (Fig. 3e). What is the 
strength of these communities? We plotted the number of connec-
tions between communities versus connections in the community 
(Fig. 3f). A network with strong communities would be expected to 
have interconnections that scale as the surface-to-volume ratio, with 
a power law exponent of 2/3, down to an exponent of zero for the 
extreme case of near-isolated communities (Fig. 3f). In contrast, a 
network with weak communities would have interconnections that 
scale with a power law exponent between 2/3 and 1, where the latter 
value corresponds to a fully connected network (Fig. 3f). Our angi-
omes yielded a power law with an exponent of 0.83 (Fig. 3f), which 
is statistically greater than 2/3 (P < 10−5, n = 311 communities). 
This implies that vertices in a given spatial region make extensive 
connections with neighboring communities. We conclude that the 

connectivity of microvessels is sufficiently uniform to negate the 
existence of strong communities (Fig. 3f).

A network with even weakly defined communities may still 
form as association between select communities and cortical  
columns. To test this possibility, we examined the number of com-
munities that passed through each column as a function of the 
physical volume of the column. We found that the number of com-
munities increased monotonically with volume, with a slope sig-
nificantly greater than zero (P < 10−4, n = 98 columns), and that no 
individual community provided the dominant number of branches 
(Fig. 3g). Furthermore, we considered the fractional contribution to 
each column by the community that contributed the largest extent 
of vasculature to the column. This fraction would be close to 1 if a 
given vascular community was confined to a single column. In prac-
tice, we observed a much smaller contribution, with a median frac-
tional value of 0.06 (98 columns in 4 brains; Fig. 3g). We conclude 
that vascular topology and geometry do not conform to cortical  
columnar boundaries.

Flow domains of penetrating vessels do not match columns
A lack of spatial modularity of the microvessels does not, per se, 
preclude the possibility of domains of flow that result from precise 
 balances of pressures in the penetrating vessels. This led us to calculate 

Figure 2 Analysis of the local geometry and 
topology of the microvasculature. (a) Scatter 
plot as a function of the total length of each 
vessel, defined as L Imn mn

k
k= ∑ ( ), and the median 

radius, denoted as Rmn. The lines are plots of 
constant fluid resistance (equation in Edge 
resistance of Online Methods). Data are from 
101,992 edges across four brains. The line 
plots are probability distribution functions 
(PDFs) for different brains, found by projecting 
the data across all lengths (right) or radii (top). 
(b) Plot of the mean radius across all segments 
in an axial slice as a function of depth.  
(c) Plot of the density of the microvasculature 
and neuronal density as a function of depth. 
The vascular density in an axial slice was 
defined as the fractional length of all edges in 
an axial slice. WM, white matter. (d) PDF of the 
number of branches in different microvascular 
loops. Data are from 59,909 loops across four 
brains. The bars denote 1 s.d. For comparison, 
the distribution of branches in the surface pial 
network is reproduced5. The inset is a close up 
of a section of a vectorized network showing 
only the microvascualture. The colored edges 
highlight a loop that consists of eight branches, 
each with a distinct color. (e) Plot of the flow 
resistance per unit length as a function of 
vessel radius; the total resistance is found by 
multiplying by the length, in micrometers.  
Note the marked increase in resistance for radii 
below ~5 µm, where the Hagen-Poiseuille law 
(dashed line) no longer holds. The concurrent 
histogram shows the distribution of vessel radii 
for all vessels. (f) Schematic of the numerical 
probe of total resistance between two vertices 
in the network. (g) Scatter plot of the resistance 
between pairs of vertices (1,000 pairs per 
brain across four brains) as a function of the 
Euclidian distance between the vertices.  
The asymptote highlights the constant value averaged across all data sets, indicative of a three dimensional lattice. The slope, (3.0 ± 4.4) × 10−5 
(mean ± 95% confidence interval, found with robust linear regression), was not significant.
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the fraction of blood that every subsurface microvessel received from 
each penetrating vessel. We made use of Kirchhoff ’s law for current 
conservation at each vertex, together with the values of the resist-
ance for each edge (Fig. 2e) and the constant pressure difference of 
50 torr (ref. 35) between the open ends of the surface arterioles and 
venules. There were no free parameters. As the first of three checks 
on self-consistency, the computed median speed of blood through the 
microvessels in the upper 400 µm of cortex was found to match the 
observed value of 0.4 mm s−1 (ref. 21) for rat.

A result of the flow calculation for a given angiome is the domain 
of vessels that is predominantly sourced by a given penetrating vessel 
(Fig. 4a–c). These regions may be compared with the cortical columns  
(Fig. 4d). Qualitatively, there was no relation of perfusion domains 
with columns. We examined the number of domains that passed 
through each cortical column as a function of the physical volume of 
the column. The number of domains increased monotonically with 

the volume, with a slope significantly greater than zero (P < 10−4,  
n = 98 columns), and no individual domain provided the dominant 
flux (Fig. 4e). Thus, we conclude that there is no modularity in the 
perfusion of microvessels in relation to cortical columns.

Penetrating vessels are not aligned to cortical columns
Although microvessels appeared to be distributed at random with 
respect to the location of cortical columns, the penetrating vessels that 

source and sink the microvascular network 
may in principle respect columnar bounda-
ries (Fig.  5a). Thus, we analyzed the areal 
density of penetrating vessels as a function 
of distance along lines that started at the cen-
troid of a column, ran through the columnar 
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boundary and ended at the midline contour in the septa (Fig. 5b). 
We observed large variations in the density on an mouse-to-mouse 
basis, but as an average over columns and mice (n = 262 columns 
over 8 mice), we found no significant bias in the distribution of either 
penetrating arterioles or venules relative to the center of a column 
(Kolmogorov-Smirnov test, P = 0.94).

Penetrating veins were more numerous that penetrating arterioles, 
by a factor of 3.0 ± 0.1 (mean ± s.e.). This is somewhat larger than 
past estimates of the ratio for rat, reported as 1.8 (ref. 22) and 2.6 
(ref. 21) based on counts in cranial windows. A nearest-neighbor 
analysis indicates that the relative position of penetrating arterioles 
and venules are weakly anti-correlated, such that the distance from 
an arteriole to the nearest venule, and vice versa, is greater than the 
distance for a random distribution of vessel locations by a factor of 
1.1 (P < 0.0001).

Penetrating vessels branch as a function of depth
Penetrating arterioles have a broad range of diameters, with a median 
value of 11 µm, although some vessels are not much thicker than 
microvessels. The primary microvessels appeared as fine branches 
that protruded from these vessels (Fig.  5c–e), whose distribution 
showed a shallow peak at the level of cortical input layer 4 (Fig. 5e) 
that is consistent with the shallow peak in the density of microvessels 
in the same layer (Fig. 2c). Neither the density of branching nor the 
density of vessels matched the sharp peak in the laminar variation in 
neuronal density in a cortical column19 (Fig. 2c).

The penetrating venules also had a broad range of diameters, with a 
median value of 9 µm. In contrast with the case for arterioles, branch-
ing from the penetrating venules peaked near the surface and mono-
tonically decreased with depth (Fig. 5e).

Intrinsic optical signals follow columnar boundaries
It is generally accepted that changes in the strength of the intrinsic  
optical signal reflect changes in neuronal activity on a column-by-
 column basis. However, past work has focused on large cortical 
columns, either in primate vison36, feline vision13,37 or rat vibrissa 
somatosensation24, which are sourced by multiple penetrating 
arterioles. Thus, changes in signal that appeared to match columns 
could be a result of changes across multiple penetrating vessels, even 
though there is no relation between the location of cortical columns 
and penetrating vessels per se (Fig. 5b). To disambiguate these pos-
sibilities, we examined the relation of intrinsic optical signals to the 
boundaries of the relatively small columns, which are associated with 
less than one penetrating arteriole, as compared with columns associ-
ated with multiple penetrating vessels. We worked under conditions 
for which the diameter of the vessels was insensitive to neuronal activ-
ity, as occurs with isoflurane anesthetic23, a vasodilator38, so that the 
change in signal strength reflected only a change in oxygenation, and 
tri-phasic vascular dynamics were eliminated39.

We mapped the intrinsic optical signals for 94 vibrissae for which 
the areas of the associated cortical columns varied by over an order of 
magnitude (four mice). Stimulation of a vibrissa led to a decrease in 
reflectance of red light, which was indicative of a fractional decrease 
in the oxygenation of blood (Fig. 6a). The magnitude of the signal 
rose for the period of stimulation and then recovered to baseline with-
out any overshoot (Fig. 6b). A map of the responses revealed that 
each centroid of the intrinsic signal appeared to be located near the 
centroid of the column (Fig. 6c); note that errors at the lateral edge 
of vS1 cortex are a result of the curvature of the brain. The columnar- 
versus vessel-centric organization was particularly clear for the optical 
signal from relatively small columns, where the peak of the signal 

Figure 5 Relation of penetrating  
vessels to cortical columns. (a) Example  
data set from a flattened cortex. The location 
of all penetration arterioles (red squares) and 
all penetrating venules (blue squares) are 
superimposed on an axial projection of the 
upper 150 µm of cortex. The cortical  
columns are based on imaging data taken  
with a flattened cortex. (b) Summary  
statistics on the location of penetrating 
vessels relative to the centroid of the  
cortical columns. The numbers of vessels  
in each bin, beginning at the center  
of the column and heading toward the  
midline of the septum (insert), were 15, 55, 
47, 31 and 36 for the penetrating  
arterioles and 30, 84, 102, 63 and 68  
for the penetrating venules. The locations  
of cortical columns boundaries were  
deduced from the cell density in layer 4. 
We plotted the fraction of pixels covered 
by arterioles or venues in each of five bins 
relative to the fraction expected for uniform 
coverage. (c) Probability density function 
for the distance between pairs of nearest 
penetrating arterioles (red) and between 
pairs of nearest venules (blue). The two 
distributions were significantly different  
(Kolmogorov-Smirnov test, P < 0.0001).  
(d) Examples of primary branches (green)  
from penetrating arterioles (red) and  
venules (blue). (e) Probability density function 
of the arteriole (red) and venule (blue) primary branches as a function of depth below the pia. The two distributions were significantly different 
(Kolmogorov-Smirnov test, P < 0.0001); the number of arteriole branches peaked near layer 4, whereas that for venules peaked at the surface.
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lay centered in the respective column and away from the location of 
shared vessels (Fig. 6d). As a composite over all data sets, we found 
that the centroid of the optical signal peaked near the columnar  
centroid (P < 10−4, n = 63 columns across four mice; Fig. 6e).

The predominant determinant of the centroid of the optical signal 
was that of the cortical column, although there was a slight, yet sta-
tistically significant, bias for the centroid to be close to penetrating 
arterioles (P = 0.025; Fig. 6f), with no orientational bias. There was no 
relation between the centroid and the penetrating venules (Fig. 6g). 
These results indicate that the depletion of oxygen from tissue pre-
dominantly follows columnar boundaries, as opposed to penetrating 
vessel location. Lastly, the full-width at half-maximum response was 
about one column (Fig. 6h). The signal returned to baseline over a 
distance of about two columns, similar for that observed for the initial 
~0.5 s of the response in awake animals40.

Perfusion domains predict vascular occlusion volumes
We sought to use the angiome to understand the pathology of micros-
trokes. A naive expectation is that the volume of the cyst formed after 
occlusion of a single penetrating arteriole18,21 (Fig. 7a) would be on 
the order of the cortical volume that was predominantly sourced by 
that vessel (Fig. 4). To test this hypothesis, we calculated the volume 
of microvasculature that received the majority of perfusion from 
each penetrating arteriole. We then divided the perfusion volume by 
the microvascular volume fraction, reported as 0.0074 (ref. 19), to 
 determine the relation of the tissue volume sourced by each penetrat-
ing arteriole and the flux through the vessel (Fig. 7b). This relation  

was consistent with a linear relation for over three orders of magni-
tude of change (P < 10−3, n = 113 domains). Furthermore, the calcu-
lated volumes were consistent with previously described experimental 
data21 on the volume of the cyst that is formed after occlusion of 
vessels with different pre-occlusion values of flux (Fig. 7b).

Lateral connectivity does not guarantee lateral perfusion
Past studies have found that blockage of a single penetrating vessel, 
either an arteriole (Fig. 7c,d) or venule (Fig. 7e,f), leads to the acute 
loss of flow in the neighboring subsurface microvasculature16,17,22 
and, chronically, formation of a cyst18,21 (Fig. 7a). On the one hand, 
the loss of perfusion appears to be at odds with the potential for 
 collateral flow through the highly interconnected microvascular 
network (Figs. 2f,g, 3 and 4). On the other hand, drainage through 
patent penetrating venules may shunt collateral flow (Fig. 5b,c). To 
distinguish among these possibilities, we calculated the spatial pattern 
of flow that occurs in response to blockage of a single penetrating 
arteriole or venule. This calculation was similar to that performed for 
the flow domains (Online Methods).

For the case of penetrating arterioles, we plotted the calculated 
decrement in flow through the microvasculature as a function of 
topological distance, that is, in units of downstream branch order 
from the penetrating vessel (Fig. 7c). The median values for the decre-
ment yielded a smooth variation (Fig. 7d), with a half-recovery at six 
downstream edges. Full recovery occurred by ten downstream edges, 
which corresponds to about half the distance to the next penetrating 
 arteriole. The scatter in the individual calculated values (Fig. 7d) 

Figure 6 Relation of images of the intrinsic optical signal (IOS) to the centroids of the cortical columns. A thinned-skull window was prepared above 
vS1 cortex and individual vibrissae were deflected at 10 Hz for 4 s. The mice were anesthetized with isoflurane so that only a net deoxyhemoglobin 
signal was observed by reflectance of light with a center wavelength of 625 nm. (a) Selected frames for four different vibrissa from the same mouse. 
Each frame is 0.5 s in duration and represents an average over ten trials. M, medial; R, rostral. (b) Complete time dependence for the spatial location 
of maximal change for the data in a. Shaded areas represent s.d. (c) Responses from all columns, normalized in amplitude and thresholded to avoid 
spatial overlap, are superimposed on a map of cortical columns obtained from flattened tissues optically sectioned with two-photon microscopy. Part 
of the mismatch at the lateral side results from an incomplete correction for the curvature of the brain. (d) Example of relatively small cortical columns 
in which the optical signal is centered (×) on the columnar centroid (+) as opposed to nearby penetrating arterioles (red dots) and penetrating venules 
(blue dots). Smoothed by convolution with a σ = 50 µm Gaussian filter. (e–g) Amplitude of the optical signal as a function of the distance to the 
columnar centroid (e), to the nearest penetrating arteriole (f) and to the nearest penetrating venule (g). The dashed lines are the null hypotheses, formed 
from a random distribution of signal centroids. (h) Lateral extent of the column-centered IOS. Maps of 94 individual whiskers from four mice were 
aligned on the spatial location of maximal change and averaged across time (frames). These column-centered maps were symmetric in all directions. 
Shaded areas represent s.d.
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was a consequence of the heterogeneity of the vascular geometry and 
range of the incident flux of blood through different penetrating ves-
sels. We compared our calculated results with previous experimental 
data17 for downstream flow immediately after blockage of an individ-
ual penetrating arteriole in rat neocortex (Fig. 7d). Calculation and 
experiment was in good agreement for the half-recovery distance.

A parallel analysis was performed for penetrating venules (Fig. 7e) 
and leads to a marked reduction in flow as a function of upstream 
branches (Fig. 7f). The flow reached the half-recovery level at four 
downstream edges and full recovery occurred at six edges, or about 
half the distance to the next penetrating venule. We compared our 
calculated results with previously experimental data22 for upstream 
flow following blockage of an individual penetrating venule in rat 
 neocortex (Fig. 7f). Calculation and experiment agreed for the half- 
and full-recovery distance.

The analysis of the flow in angiomes with occluded penetrating 
vessels (Fig. 7d,f) provided second and third tests of self-consistency  

between the calculated flow and the experimental data. The corre-
pondence between the calculated flow and that observed for the 
case of penetrating arterioles was slightly improved when all 
microvessels dilated by a small amount, that is, less than 0.5 µm 
in diameter. In contrast, the correpondence between the calcu-
lated flow and that observed for the case penetrating venules 
was slightly improved when all microvessels constricted. Thus, 
the angiomes gleamed from this study (Fig. 1a) and published 
values of vascular parameters21,32,35, used without alteration, 
appear to provide a balanced approximation to the calculation of  
flow patterns.

The experimental data for both penetrating arterioles and venules 
showed a complete or near complete cessation of flow close to the 
occlusion, whereas our calculated values were small, but nonzero 
(Fig. 7d,f). This discrepancy originates from the assumed linear rela-
tion of flux and pressure, which ignores the propensity of red blood 
cells to stall at low pressure differences41.

Figure 7 Calculated loss of lateral flow under 
numerically imposed pathological conditions in 
comparison with experimental observations.  
(a) Cartoon of local occlusion and representative 
necrotic cyst formed after occlusion of a rat 
penetrating arteriole along with thin section 
stained with the pan-neuronal marker αNeuN. 
Reproduced from ref. 21. (b) Computed 
vascular perfusion domains and their estimated 
parenchymal volume were consistent with 
measured cyst volumes formed after single 
artery occlusion. The vascular volume of 
115 domains in 4 data sets (colored circles) 
was computed following numerical dye 
tracing (Fig. 4) as a function of the perfusion 
current. The parenchymal volume perfused 
by each domain was computed as 1/0.0074 
of the vascular volume following previous 
measurements19. The linear fit to the data 
holds for a >98.5% confidence limit. We 
further plotted the cyst volumes (yellow 
and green diamonds), found from targeted 
photothrombotic occlusion of rat penetrating 
arterioles in rat cortex5,21, as a function of 
the initial flux in the arteriole. (c) Schematic 
of the occlusion of an individual penetrating 
arteriole with scheme for labeling the order 
of downstream edges. (d) We simulated the 
occlusion of selected, individual penetrating 
arterioles and calculated redistribution of flow 
in microvessels up to 15 edges downstream 
from the occlusion site. The reduction in 
vascular flux is plotted as a function of each 
vessel’s topological distance, that is, in terms of 
vertices, from the occluded plunging arteriole. 
Shown are the results of 100 simulations per 
order of the downstream edge (red circles) 
along with the median reduction in flux (red 
diamonds). We compared these results with 
the published in vivo data of downstream flux 
measurement before and after penetrating 
arteriole occlusion in rat neocortex (green points 
are data from 175 vessels with median values 
shown as yellow and green diamonds)17.  
(e) Schematic of the occlusion of an individual penetrating venule with scheme for labeling upstream edges. (f) We simulated the occlusion of selected, 
individual penetrating venules and calculated redistribution of flow in microvessels up to 15 edges upstream from the occlusion site. The reduction in 
vascular flux is plotted as a function of each vessel’s topological distance from the occluded venule. The distribution of vascular responses is shown for 
100 simulations per order of edge (blue circles) along with the median reduction in flux (blue diamonds). The results were compared with the published 
in vivo data of upstream flux measurement before and after penetrating arteriole occlusion (green points are data from 170 vessels)22.
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DISCUSSION
We obtained geometrically correct angiomes of the cortical vascula-
ture in mouse for volumes that spanned the full thickness of cortex 
and extended tens of cortical columns across the vibrissa region of 
primary somatosensory cortex (Fig. 1). We analyzed these data sets 
in terms of weighted graphs. Segments of vessels were characterized 
as edges, with a fluid conductance that depends on their length and 
radius (Fig. 2a,e). Edges joined predominantly as triads. We further 
obtained the locations of all neuronal and non-neuronal nuclei, from 
which the location of individual cortical columns was computed and 
used to further annotate the vascular maps (Fig. 1).

Our results build on the use of eroded casts of brain vasculature 
that were examined by scanning electron microscopy42, as well as 
dye-filled brains that were physically26 or optically43 sectioned. This 
past work identified the prevalence of closed loops and determined 
that microvessels joined only as triads. A recent study44,45 exploited 
X-ray tomography to examine relatively large casts and model flow in 
extended vascular structures44. However, as neurons were unlabeled 
in these studies, the potential relation between microvascular topol-
ogy and cortical columns remained untested.

Our data and analysis support the notion that the brain cerebral 
microvascular network is devoid of subnetworks of microvessels that 
are fully connected among themselves, but only connected to the main 
network with one or a few edges (Fig. 3). This observation is expected 
from the fixed number of vessels, or edges, joining at each vertex 
(Online Methods). Furthermore, variations in the vascular density do 
not coincide with the location of cortical columns (Fig. 3) and the 
arrangement of the penetrating vessels that source and drain blood to 
the microvasculature (Figs. 3 and 5), as well as the resulting calculated 
patterns of flow, bear no correspondence with cortical columns (Figs. 4 
and 7a,b). Thus, we refute the notion of a neurovascular module15 that 
is tied to the structure of a cortical column. Rather, we suggest that flow 
is controlled on the level of microvessels. One possibility is through 
 constriction or stiffening of contractile proteins in pericytes in response 
to the changing environment of neurotransmitter spillover46,47.

The calculated patterns of blood flow for our angiomes show that 
microvessels do not provide sufficient collateral flow to perfuse tis-
sue when a penetrating arteriole or venule is blocked. The spatial and 
topological extent of the reduction in flow (Fig. 7d,f) is consistent 
with previous experimental results5,16,17,21 and numerical calcula-
tions44, and therefore provides a direct link between local ischemia 
and structural changes in the vascular network21,48. Physically, the 
penetrating venules act as sinks that prevent blood in neighboring 
penetrating vessels from entering the area previously sourced by 
the occluded vessel. The essence of this explanation is captured by a 

one-dimensional circuit (Fig. 8a) with alternating penetrating arte-
rioles as ideal sources and penetrating venules as ideal sinks that are 
linked by a single resistor that represents the asymptotic resistance 
of the microvasculature (Fig. 2g). Blockage of a source corresponds 
to occlusion of a penetrating arteriole and isolates a segment of  
tissue (Fig. 8a).

A rhombic lattice (Fig. 8b), in which the sources and sinks form 
super-vertices with a 1:2 ratio, effectively models the consequences 
of blockages to both penetrating arterioles and venules. Blockage of a 
source leads to an isolated hexagon of tissue (Fig. 8c,d) whose radius 
corresponds to about ten vertices and well approximates observations 
for a blocked penetrating arteriole (Fig. 7d). Blockage of a sink leads 
to a smaller isolated hexagon of tissue (Fig. 8c,d). Here, the radius 
corresponds to about five vertices, consistent with observations for 
a blocked penetrating venule (Fig. 7d). A random arrangement of 
penetrating vessels (Fig. 5), as well as variability in the resistance of 
vessels, will smooth the abrupt diminution in flow predicted for the 
lattice. The essential features of the model are preserved for other 
source to sink ratios, including a 2:1 ratio that approximates that of 
the human cortex27. From a cognitive perspective, this model high-
lights why blockage of any penetrating vessel leads to an infarct and 
is a catalyst for vascular dementia, consistent with behavioral data  
for rat21 and the reevaluation of data for humans49,50. From the per-
spective of functional imaging, this model explains why changes in 
blood oxygenation can be localized (Fig. 6d,h).

Figure 8 Lattice models of the angiome. The sources are penetrating 
arterioles (red, PAs), sinks are penetrating venules (blue, PVs), network 
resistors represent the asymptotic value of the microvasculature (Fig. 2e), 
and the source and sink resistances are about half the value of the 
network resistances (Fig. 2e). (a) Linear circuit, the directions  
of current flow indicated for normal conditions (top) and after a  
block of a penetrating arteriole (bottom). (b) Planar circuit with a  
rhombic lattice and two penetrating venules for each penetrating 
arteriole. (c) Blockage of a penetrating arteriole leads to a region  
of no flow with an effective radius of 3 3 2 0 91/( ) .π =  in units of  
median spacing between penetrating venules, whereas blockage of a 
penetrating venule leads to a region of no flow with an effective radius of 

3 2 0 49/( ) .π =  in the same units. (d) Comparison of the prediction from 
the lattice model and data for penetrating arterioles17 and venules22. 
The number of vertices between a pair of penetrating venules, which sets 
the distance scale, was estimated from our analysis (Figs. 2e and 5c) as 
100 m 50 mµ µ/ / 2 10

2( )( ) =  vertices.
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METhODS
Methods and any associated references are available in the online 
version of the paper.
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ONLINE METhODS
tissue preparation. 12 C57/BL6 male mice (22–24 g) were used for primary 
data in this project. Eight of these mice were used to calculate the distribution 
of penetrating vessels relative to columnar boundaries (Fig. 5b). Although no 
statistical methods could be used to pre-determine sample sizes, the numbers 
used established statistical significance of a null hypothesis for all samples, with 
an average deviation from the null of less than 0.07 and a worst case devia-
tion of 0.12. Our fixation method was designed to minimize the collapse of 
large surface vessels and preserve the structure of the microvasculature. Briefly, 
following deep anesthesia under 4% isofluorene (vol/vol) in 95% oxygen and 
5% nitrogen, mice were killed by peritoneal injection of Fatal Plus (Vortech 
Pharmaceuticals) and transcardially perfused with warm heparinized-saline 
(40–60 ml of 20 units ml−1 of heparin, no. 1181232; Pfizer Injectables) in 0.9% 
NaCl (wt/vol), using a peristaltic pump whose flow was set to 1 ml min−1 to 
mimic mouse cardiac output. The mouse was then tilted head down in a cus-
tom platform and manually perfused at constant pressure with 20 ml of a 10% 
fluorescein-conjugated-albumin gel19 (wt/vol). Curing of the gel was initiated 
at the end of the perfusion by submerging the carcass of the perfused mouse in 
ice-cold water for ~30 min; the head was severed and equilibrated with to 4% 
paraformaldehyde (wt/vol) in phosphate-buffer saline (PBS) for 8–12 h, and the 
brain was extracted under a fluorescent dissection microscope to avoid damage 
to pial vessels and rinsed for 8–12 h in PBS. Surface arterioles versus venules 
were identified in whole brains by tracing them to the middle cerebtal artery 
versus the superior saggital sinus Rhinal vein. The tissue was then labeled with 
4′,6-diamidino-2-phenylindole (DAPI) dilactate to stain all nuclei and NeuN 
antibody directly conjugated to with Alexa-594 to immunolabel neuronal nuclei, 
as described19. All protocols were approved by the Institutional Animal Care 
and Use Committee at University of California, San Diego.

Tissue from mice that were first imaged by intrinsic optical signal imaging were 
prepared as described above with the following additional steps to permit imag-
ing of the upper lamina across all of vS1 cortex. After fixation, surface arterioles 
versus venules were identified as above, the cortices were extracted, flattened 
between glass slides separated by 1.4 mm, soaked for 8–12 h in 4% paraformal-
dehyde in PBS, and then removed from the flattening device, washed and rinsed 
for 8–12 h in PBS, stained as described above, and progressively index-matched 
in 60% sucrose (wt/vol) and 1% Triton X-100 (wt/vol) in PBS as described19,22. 
This procedure was relatively fail-proof and fast compared with the large-scale 
all-optical histology20 performed on the samples, albeit without the ability to 
image deep layers.

Intrinsic optical signal imaging. The bone overlying the barrel field of S1 was 
thinned 1 d before imaging8. Throughout imaging sessions, mice were anes-
thetized with isoflurane at 1.8–2.0% in oxygen, maintained at a constant body 
temperature of 37 °C using a temperature control system (no. 40-90-8, FHC) and 
continuously infused with 5% glucose (vol/vol) in 0.9% NaCl subcutaneously at a 
rate of 10 ml kg−1 h−1 using a syringe pump (no. 780101, Harvard Apparatus).

We followed previously described protocols for imaging13,24. In brief, a tel-
escope imaged a 4- × 4-mm region on the cortical surface onto a 512 × 512 pixel 
region of a CCD camera (Pantera TF 1M60, Teledyne Dalsa) at a resolution of 
7.87-µm per pixel. Prior to IOS imaging, a single reference vessel image was 
taken with illumination at 455 nm (no. M455L2, ThorLabs). During imaging, the 
cortical surface was continuously illuminated at 625 nm (no. M625L2, Thorlabs) 
and frames were acquired as averages over 0.5-s intervals. For stimulation, an 
individual vibrissa was trimmed to 20–50% of full length, placed inside a quartz 
pipette attached to a piezoelectric element, and displaced 0.5 mm in both rostral 
and caudal directions with a 10-Hz sinewave pattern for 4 s at a distance of 10% 
of the original length. 6–25 trials per vibrissa were sufficient to reliably detect 
an evoked signal. A single baseline image (Rbase) was created by averaging over 
eight frames that preceded the stimulus onset. Signal frames (If) were generated 
by subtracting and normalizing individual frames (Rf) by this baseline51 using 
the formula ∆If = (Rf − Rbase) / Rbase.

two-photon  automated  high-throughput  histology. Tissue was imaged 
throughout its full depth with all-optical histology20, a block-face technique that 
combines sequential tiled imaging by two-photon laser scanning microscopy52 
and plasma-assisted ablation mediated by amplified ultra-short laser pulses53 
to process fixed tissue. We imaged with a 25 × 0.95 NA Leica dipping objective  

(no. 11506323, Leica Microsystems) to achieve a 400-µm2 field of view and 
acquired cubic voxels that were 1 µm on edge. On each iteration, the surface of 
the tissue block was imaged in a tiled fashion, with 50 µm of overlap between tiles, 
throughout a depth of 150–200 µm. These dimensions were chosen to ensure 
an adequate signal-to-noise ratio for subsequent processing. We then rastered 
the sample to ablate the top 50–70 µm of tissue in 10-µm wide and 10-µm deep 
strips with the use of ~4-µJ per pulse, 200-fs pulses of 800-nm light delivered at 
5 kHz (Libra, Coherent). A circulating bath of PBS removed debris. At the end of 
each ablation round, the objective was raised above the sample and its surface was 
cleaned from air bubbles with the help of an automated wiper arm. Slabs of index 
matched tissue were imaged without ablation. The entire process was automated 
with the MPScope software system54.

stitching. Individual blocks of raw data were stitched to form a single large data. 
Our process is derived from a previous study55 and, in brief, involves three steps. 
First, we estimated the spatial offset of each pair of neighboring blocks with the 
use of a mean-normalized three-dimensional cross-correlation that is calculated 
for the overlap between blocks. Second, we searched for a global solution, found 
through linear analysis55, that positions each block through the simultaneous 
minimization of all local interactions. Finally, blocks were placed on a common 
coordinate system. The algorithm was used with data sets of over 2,000 blocks 
with final volumes of 20 giga-voxels.

Image segmentation and vectorization. These processes converted the stitched 
data sets into vectors that represent short centerlines in each vessel (Fig. 1d) as 
well as the location of all neuronal and nonneuronal nuclei19. Each centerline was 
associated with a specific radius, points in 1 of 26 directions, and had two neigh-
bors everywhere except at branching points, where three adjacent centerlines 
overlapped to form a vertex (Fig. 1e). The radii were corrected for the eccentric-
ity induced by differences in axial versus lateral resolution and for the estimated 
point spread of the focus19. We automatically corrected for a small fraction of 
gaps, ~0.05 of all vessels, in the data set25. Identification of surface and penetrating 
vessels as arterioles versus venules was based on tracing the surface vessels to the 
middle cerebral artery versus the central sinus or rhinal vein.

Cortical columns in mouse vibrissae cortex were clearly defined in layer IV by 
their cytoarchitectonic pattern, that is, cell somata organize around the perim-
eter of the column, whereas cortical and thalamo-cortical projections occupy the 
center14. The lateral boundaries and axial extent of cortical columns were delimited 
by visual examination of the reconstructed volume of α-NeuN image data.

edge resistance. The vectorized data permitted us to estimate the resistance of 
each edge, denoted ρnm, in terms of Lnm, and Rnm. Conceptually, this is equivalent 
to expressing the data in terms of a weighted graph where the resistance is the 
weighting function27. We use a modified Hagen-Poiseuille law to account for 
the hematocrit of the blood and the interaction of red blood cells with the vessel 
wall32, for which
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where ηwater is the viscosity of water.
The structure of the vascular graph, that is, the connections between vertices, 

is stored in the form of an adjacency matrix. The adjacency matrix, A, contains 
exactly three nonzero elements, Anm = Amn, per row and column, that correspond 
to the tri-partite connection.

network resistance. The resistance between any two vertices in a finite lattice 
can be calculated from the Laplacian matrix l = A – d, where Dmm mmn

N= =∑ A1   
forms the diagonal matrix d. Following a previously described proof 33, the eigen-
vectors, denoted Ψm = (ψm;1,…, ψm;N), and associated eigenvalues, denoted λk, 
that satisfy lΨm = λmΨm for m = 1,…, N will determine the resistance between 
any two vertices (a, b), where 
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and we note that λ1 = 0. The penetrating vessels were excluded for the calculation 
of the resistance between two vertices in the microvasculature (Fig. 2f,g).

community partitioning. We use a previously described method34 and maxi-
mize a measure, denoted Q, that reflects the density of edges between vertices 
inside communities as compared to edges between vertices in different communi-
ties. Following previously described notation56,57, we have

Q
M

A D D
M

c cmn
mm nn

n

N

m

N

m n= −





( )∑∑1
2 2

d ,

where M Dmmm
N= =∑ 1  is the sum of all edge weights and cm is the community to 

which vertex m is assigned with δ(cm, cn) = 1 if cm = cn and δ (cm, cn) = 0 otherwise. 
To analyze large networks (N ~105), we made use of an optimized community 
detection package modified for weighted edges that is based on previous work56 
and distributed by the authors. As this heuristic algorithm has a stochastic com-
ponent, we report a consensus community vertex labeling out of 1,000 runs. This 
was done with the help of the Cluster Ensemble package (http://strehl.com) based 
on previous work58. This package depends on the METIS graph-partitioning 
package (http://people.sc.fsu.edu/~jburkardt/c_src/metis/metis.html).

Fluid flow. Flow is calculated from Kirchhoff ’s law for the conservation of the cur-
rent of blood at each vertex. Thus each of the N vertex equations is of the form

P Pm n

mnn

− =∑ r
0

three
entries

where Pm is the pressure at the mth vertex. An exception occurs for vertices that 
are directly connected to a truncated surface vessel. These are used to set inflow 
pressure through surface arterioles, that is,

P P Pm n

mn

A

mn

− =∑ r r

two
entries

where PA is the mean surface arteriole pressure and ρm is the resistance from 
the vertex to the open end, and reflect the zero output pressure though surface 
venules, that is,

P Pm n

mnn

− =∑ r
0

two
entries

where the mean surface venule pressure is taken as 0. This yields the matrix 
equation

LP I= source

where l is the previously described Laplacian and the surface terms are expressed 
as currents Im;source = PA/ρm. The equation is solved for the Pm values, scaled by 
the value of PA. The volume flux in a given edge, with units of volume per unit 
time, is denoted jmn, and is found from

j P P
mn

m n

mn
= −

r

The average speed of the blood in the edge is v j
Rmn
mn

mn
=

π 2 .

scaling of local connectivity. The microvascular network appears to be devoid 
of subnetworks of microvessels that are fully connected among themselves, but 
are only connected to the main network with one or few edges (Fig. 3). Thus, 
the microvasculature does not form a small world network59. Graph theory34 
provides an elegant proof that links this observation to the finding that the micro-
vessels branch among themselves with a fixed number of vessels, or edges, joining 
at each vertex. Our analysis for the case of vertices with a fixed coordination 
number of three shows that the fraction of the network that can be isolated scales 
as (log2N)/N, where N is the number of vertices. This fraction is negligible with 
N ~104 per 1 mm3 volume. The vascular network may be viewed as ‘modestly’ 
random, that is, it does not support the inclusion of partially isolated subnet-
works, yet is not crystalline.

To prove the above statement, we consider the case of a network with vertices 
of coordination number three only and step through the counting of vertices; for 
example, see ref. 60. First, we start at some particular vertex and count its three 
‘first’ neighbors. Next, we note that each of these three first neighbors has two 
available edges that will connect to a total of 2 × 3 new vertices, not counting the 
ones involved in the initial step and not permitting two edges to connect the same 
two vertices. After this step, we have counted a total number 1 + 3 + 2 × 3 = 10 ver-
tices. Continuing in this way, we see that at the (n + 1)th step we acquire 2 × S(n) 
new vertices, where S(n) is the number of vertices acquired at nth step. If the total 
number of vertices, denoted N, were almost infinite, we need not correct for the 
vertices already counted in earlier steps, as they won’t appreciably diminish the 
reservoir of fresh vertices. Then, S(n + 1) = 2S(n), and the total number of vertices 

counted after the n + 1 steps would be 1 2 1 2 1 2 1 22
1
1 2+ = + −( ) − ≈+

=
+ +∑ r n

r
n n/( ) .  

Almost all the N vertices will then have been counted in n + 1 steps, so that  
N ≈ 2n. Thus, after only log2N steps, almost all N vertices have been counted, 
which leaves only a fraction (log2N)/N for weakly connected inclusions in the 
networks, such as trees.

When N is not infinite, we must correct for previously counted vertices at each 
step. Thus, at the mth step, we must allow for the fact that we have already counted 
the sum of all vertices, that is, S rr

m ( )=
−∑ 1

1 . So the number of vertices counted up 

to the (n + 1)th step is given by only S r S mm
r n

r
n ( ) ( )−



 ==

−
= ∑∑ 1

1
1 2 . So even if 

N is finite, the fraction of the network that can be weakly interconnected is still 
of order (log2N)/N.
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