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Background
Experimental neuroscience involves the use of many 
different tools from physics, genetics, and other fields. 
Proper data analysis is an integral part of this set of tools. 
Used correctly, analysis will help to define the magni-
tude and significance of a given neural effect; used cre-
atively, analysis can help reveal new phenomena.

In this chapter, we consider five example cases  
that introduce the utility and implementation of 
spectral methods:

 (1)  Deduction of variation in the power of a 
high-frequency cortical oscillation from a hu-
man electrocorticogram (ECoG). This will 
illustrate frequency-domain concepts such as  
the spectrogram.

 (2)  Deduction of synaptic connectivity between 
neurons in the leech swim network. This will 
emphasize notions of spectral coherence and 
its associated confidence level.

 (3)  The discovery of neurons in rat vibrissa motor 
cortex that report the pitch of vibrissa move-
ment. This will illustrate the notion of the 
spectral power density as the sum of -functions 
corresponding to pure tones and a slowly vary-
ing, or pink, spectrum.

 (4)  The denoising of imaging data in the study of 
calcium waves. This will introduce the concept 
of singular value decomposition (SVD) in the 
time domain and illustrate the notion of space-
time correlation in multisite measurements.

 (5)  The delineation of wave phenomena in turtle 
cortex. This will illustrate the concept of SVD 
in the frequency domain and further illustrate 
the notion of space-time coherence.

Throughout this discussion the emphasis will be 
on explaining the analysis and not on the scientific 
questions per se.

Advantages of Working in the 
Frequency Domain
Why work in the frequency domain? One part of the 
answer is to delineate the number of degrees of free-
dom required to calculate confidence intervals. The 
following factors are relevant:

	 •		Determining	the	number	of	degrees	of	 freedom	
is complicated in the time domain, where all 
but white noise processes lead to correlation  
between neighboring data points.

	 •		In	 contrast,	 counting	 the	 number	 of	 degrees	
of freedom is straightforward when neighbor-

ing data points are uncorrelated. This occurs in 
the frequency domain when the amplitude of 
spectral power in the data varies only slowly on 
the scale of the bandwidth, so that neighboring 
points in frequency are uncorrelated.

A second part of the answer is that some phenom-
ena have a simpler representation in the frequency  
domain rather than the time domain.

This chapter builds on the discussion of the time-
bandwidth product and multitaper analysis (Thom-
son, 1982) in Spectral Analysis for Neural Signals, 
presented earlier in this Short Course by Bijan Pesa-
ran. First, we recall the time-frequency uncertainty:

Tf = 2p
where T is the total length of the time series of the 
data; 2p is the number of degrees of freedom and de-
fines the time-frequency product, with p ≥ 1; and Δf 
is the resultant full bandwidth. The power is con-
centrated in the frequency interval Δf, optimally so 
for the use of family of Slepian tapers employed to 
estimate spectra (Thomson, 1982). The maximum 
number of tapers, denoted K, that supports this con-
centration, and which is employed throughout our 
presentation, is as follows:

K = 2p  1.

Rosetta Stone
The variables used in the Pesaran chapter herein 
and past reviews (Mitra and Pesaran, 1998; Mitra et 
al., 1999) expressed in discrete, normalized variables 
by writing (1) T = NΔt, where N is the number of 
data points in the time series and Δt = 1 /  (2f

Nyquist
) 

is the sample time; and (2) 2W = Δt Δf, where W is 
the half-bandwidth. Thus, NW = p. In normalized 
variables, time spans the interval [1, N] rather than 
[Δt, T]; frequency spans the interval [–½, ½] rather 
than [–f

Nyquist
, f

Nyquist
]; and the integral

 

 is replaced by with
 

Δt = 1. Tools for the numerical calculations used in 
the examples below are part of the Matlab-based 
Chronux package (www.chronux.org). The primary 
textbooks include those by Percival and Walden, 
1993, and Mitra and Bokil, 2008.

Case one
We analyze a trace of human ECoG data, defined as 
V(t), that was obtained in a study on ultra-slow brain 
activity (Nir et al., 2008) (Fig. 1A). The mean value 
is removed to form the following:

.
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Our goal is to understand the spectral content of this 
signal—with confidence limits! The Fourier trans-
form of this signal, with respect to the kth taper, is 
as follows:

where w(k)(t) is the kth Slepian taper, whose length is 
also T. We then compute the spectral power density, 
whose units are amplitude2/Hz, in terms of an aver-
age over tapers:

 

where ; we 

further average the results over all trials, if appro-
priate. The above normalization satisfies Parseval’s 
theorem, i.e.,

 

The spectrum in this example is featureless, having a 
hint of extra power between 50 Hz and 100 Hz  
(Fig. 1B). One possibility is that the spectrum is bet-
ter defined on a short time scale, but drifts  
(Fig. 1B, insert). In this case, it is useful to compute 
the running spectrum, or spectrogram, denoted 
S(f; t), which is a function of both frequency and 
time. Here we choose a narrow interval of time, com-
pute the spectrum over that interval, and then step 
forward in time and recalculate the spectrum. For the 
example data, this process reveals an underlying 
modulation in the power between 40 Hz and 90 Hz 
(Fig. 1C): the so-called γ-band.

How do we characterize the γ-band’s variations in 
power? We treat the logarithm of the power in a band 
as a new signal found by integrating the spectrogram 
over the frequency:

This gives us a new time series (Fig. 1D). We take 
the logarithm because the spectrum is χ2– as opposed 
to Gaussian-distributed; this transform stabilizes the 
estimate of the variance. The spectral components of 

the new time series are called the “second spectrum,” 
denoted Sγ(f) for this example:

The above formula shows a number of spectral fea-
tures (Fig. 1E) and raises two general issues.

The first issue is the calculation of confidence inter-
vals. For variables with a Gaussian dependence on 
their individual spectral amplitudes, the confidence 
limits may be estimated in various asymptotic limits. 
However, the confidence intervals may also be esti-
mated directly by a jackknife (Thomson and Chave, 
1991), where we compute the standard error in terms 
of “delete-one” means. In this procedure, we calcu-
late K different mean spectra, in which one term is 
left out: 

 .
Estimating the standard error of Sγ(f) requires an 
extra step since spectral amplitudes are defined on 
the interval [0, ∞) while Gaussian variables exist on 
(–∞, ∞). The delete-one estimates, |C

i
(n)(f)|, were 

replaced with the following transformed values:

or

The mean of the transformed variable is as follows:

and standard error of the transformed variable is as 
follows:

.

The 95% confidence interval for the spectral power 

is thus  The confidence 
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bands are symmetric about the mean when spectral 
power is plotted on a logarithmic scale (Fig. 1E).

A second issue is a 1/f  2 trend in the spectrum, which 
obscures peaks. We remove this trend by computing 
the spectrum of dVγ(t)/dt in order to reveal peaks, 
particularly at f = 0.05 Hz (Fig. 1F). The conclu-
sion is that power in the γ-band shows slow periodic 
variation, which is of interest in light of the conjec-
ture that this variation may drive spectrally similar 
variations in the blood oxygenation level-dependent 
(BOLD) functional magnetic resonance (fMR) sig-
nal (Nir et al., 2008).

Case two
We now consider the use of optical imaging to de-
termine potential pairwise interactions between 
neurons (Cacciatore et al., 1999). We focus on im-
aging data taken from the ventral surface of a leech 
ganglion and seek to identify cells in the ganglion 
that receive monosynaptic input from neuron Tr2 in 
the head (Fig. 2A). This cell functions as a toggle for 
regulating the swim rhythm in these animals. Rather 

than serially impaling each of the roughly 400 cells 
in the ganglion and looking for postsynaptic currents 
induced by driving Tr2, a parallel strategy was adopt-
ed by Taylor and colleagues (2003). The cells in the 
ganglion were stained with a voltage-sensitive dye 
(Fig. 2B), which transforms changes in membrane 
potential into changes in the intensity of fluorescent 
light. The emitted light from all cells was then de-
tected with a CCD camera (Fig. 2B) from which time 
series for the change in fluorescence were calculated 
for each neuron in the field. Presynaptic cell Tr2 was 
stimulated with a periodic signal, at frequency f

Drive
, 

with the assumption that candidate postsynaptic 
followers of Tr2 would fire with the same periodic-
ity (Fig. 2C). The phase of the coherence relative to 
the drive depends on several factors: the sign of the 
synapse, propagation delays, and filtering by postsyn-
aptic processes.

The coherence between the response of each cell and 
the drive (a complex function denoted C

i
(f) ) was 

calculated over the time period of the stimulus. We 
denoted the time series of the optical signals as V

i
(t) 

Figure 1. Analysis of the spectral properties of human local field potential (LFP) data (Drew et al., 2008, their Fig. 1, reprinted with 
permission from Nature Neuroscience). A, The LFP was obtained during stage 2 sleep; fNyquist = 500 Hz. B, Spectrum (T = 300 
s; K = 29) of the LFP in panel A; insert shows spectra (T = 10 s; K = 9) for the intervals demarcated in panel D. C, Spectrogram 
(window T = 10 s, overlap = 1 s; K = 13) of the LFP with full bandwidth ΔF = 1.4 Hz; color scale maps the logarithm of power 
from black/red (low) to white/yellow (high). Note the systematic variation in power in the γ band. D, Time series of the logarithm 
of the power in the γ band of the LFP, integrated from f1 = 40 Hz to f2 = 90 Hz; fNyquist = 0.5 Hz. E, Second spectrum (T = 300 s; 
K = 13) using the time series in panel D with ΔF = 0.05 Hz; blue stripe is the 95% (2σ) confidence interval. F, Second spectrum 
using the derivative of the time series in panel D as a means of removing a 1/f2 trend.
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and the reference drive signal as U(t). The spectral 
coherence was defined as follows:

To calculate the standard errors for the coherence  
estimates, we again used the jackknife (Thomson 
and Chave, 1991) and computed delete-one averages 
of coherence, denoted C

n
(k)(f) , where n is the index 

of the deleted taper:

Estimating the standard error of the magnitude of 
C

i
(f) requires an extra step, similar to the case for 

the spectral power, since |C
i
(f)| is defined on the  

interval [0, 1] while Gaussian variables exist on 
(–∞, ∞). The delete-one estimates, |C

i
(n)(f)|, were 

replaced with the following transformed values:

or 

The mean of the transformed variable is as follows:

Figure 2. Analysis of voltage-sensitive dye imaging experiments to find followers of Tr2 (Taylor et al., 2003, their Fig. 1 and  
Fig. 3, reprinted with permission from the Journal of Neuroscience). A, Cartoon of the leech nerve cord; input to Tr2 forms the 
drive U(t). B, Fluorescence image of ganglion 10 stained with dye. C, Ellipses drawn to encompass individual cells and define 
regions whose pixel outputs were averaged to form the Vi(t). D, Simultaneous electrical recording of Tr2, i.e., U(t), and optical 
recordings from 6 of the cells shown in panel C, i.e., V1(t) through V6(t), along with |Ci(fDrive)| (T = 9 s; K = 11) E, Polar plot of 
Ci(fDrive) between each optical recording and the cell Tr2 electrical recording for all 43 cells in panel C. The dashed line indicates 
that α = 0.001 is the threshold for significance; error bars = one standard error. F, Results of electrophysiological tests of mono-
synaptic drive for cells 356, 252, and p54, along with confocal images of fills of these cells. Spike-triggered averages, each from 
a different condition, are shown with error bands. The spike in Tr2 that triggered each sweep is shown only for the first condi-
tion; scale bar indicates current injection. The second trace (Normal) is the recording from the postsynaptic target in physiological 
saline. The third trace (20/20) is the recording in 20 mM Ca

2+
 / 20 mM Mg

2+
 saline to block polysynaptic transmission. The fourth 

trace (0/20) is in 0 mM Ca
2+

 / 20 mM Mg
2+

 saline to block all transmission. The bottom trace (Wash) is again in normal saline.
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and standard error of the transformed variable is  
as follows:

The 95% confidence interval for the coherence is 

 For 

completeness, an alternate transformation for com-
puting the variance is g{|C

i
|} = tanh-1{|C

i
|}.

We now consider an estimate of the standard devia-
tion of the phase of C(f). Conceptually, the idea is 
to compute the variation in the relative directions of 
the delete-one unit vectors C

i
(f)/|C

i
(f)|. The stan-

dard error is computed as follows:

Our interest lies in the values of C
i
(f) for f = f

Drive
 

and the confidence limits for these values. We chose 
the bandwidth so that the estimate of |C

i
(f

Drive
)| is 

kept separate from that of the harmonic |C
i
(2f

Drive
)|; 

the choice Δf = 0.4 f
Drive

 works well. We thus graph 
the magnitude and phase of C

i
(f

Drive
) for all neurons, 

along with the confidence interval, on a polar plot 
(Fig. 2E).

Finally, we consider whether the coherence of a  
given cell at f

Drive
 is significantly greater than zero, 

that is, larger than one would expect to occur by 
chance from a signal with no coherence, as a means 
of selecting candidate postsynaptic targets of Tr2. We 
compared the estimate for each value of |C

i
(f

Drive
)| 

to the null distribution for the magnitude of the  
coherence, which exceeds

only in α of the trials (Hannan, 1970; Jarvis and  
Mitra, 2001). We used α = 0.001 in our experiments 
to avoid false-positives. We also calculated the mul-
tiple comparisons of α level for each trial, given by 
α

multi
 = 1 – (1 – α)N, where N is the number of cells 

in the functional image, and verified that it did not 
exceed α

multi
 = 0.05 on any trial.

The result of the above procedure was the discovery 
of three postsynaptic targets of cell Tr2, two of which 
were functionally unidentified neurons (Taylor et al., 
2003) (Fig. 2F).

Case three
Rats can palpate objects via highly regular rhythmic 
whisking (Berg and Kleinfeld, 2003). Motivated by 
ideas from control theory, we conjectured that pri-
mary motor (M1) cortex transforms sensory input 
to serve as a feedback signal for the smooth motion 
of the vibrissae. We posed the question of whether 
a punctate periodic input (such as occurs when the  
animal rhythmically palpates an object) is trans-
formed into a pure sinusoidal signal over the 5-20 Hz 
range of normal whisking frequencies.

To test this theory, we had awake rats hold their  
vibrissae still as periodic air puffs were delivered. 
Records from primary sensory cortex (S1) showed a 
known punctate response, while those from M1 were 
smooth (Figs. 3A,E). The stimulus-driven power 
spectrum for the S1 unit displayed multiple harmon-
ics (Fig. 3B) consistent with a pulsatile response, 
while that for the M1 unit appeared to have power 
only at the fundamental frequency of the stimulus 
repetition rate, denoted f

1
 (Fig. 3F). We consequently 

asked whether the motor response could be replaced 
with a pure sinusoidal process with a frequency of f

1
. 

Thus, the time series for the spike rate must take the 
following form:

 ,

where η(t) is the residual noise. We recall that cos(x) 
= ½(e i x + e –ix) and define

 

so that V(t) can be placed in a computationally con-
venient form, as follows:

As a means of estimating the complex amplitude B
1
, 

we first make multiple estimates of the spectra in the 
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vicinity of frequency f
1
 so that we can regress over a number of tapers to determine B

1.. The Fourier transform 
of V(t) with respect to the kth taper is as follows:

This compresses to

where we defined the spectrum of the kth taper as 

and the kth spectral estimate of the residual as

.

The estimate of the transform at the frequency of interest, f = f
1
, becomes

where we used  from the condition 2f
1
 > Δf, i.e., the spectrum of a taper has no amplitude 

outside of its bandwidth, and note that w(k)(t) is an odd function for even values of k.

The above relation specifies a regression for B
1
 over odd values of k, where the Ṽ(k)(f

1
) are the dependent 

variables and the  ̃(k)(f
1
) are the independent variables. The least-squares estimate of B

1
, denoted B̂

1
, is  

as follows:

and the associated F-statistic is derived to be the following (Thomson, 1982):

The formula below is the estimated contribution of the periodic signal to the continuous spectrum:
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We accept the estimator
 
B̂

1 
if the F-statistic exceeds 1 - 1/N

t
, where N

t
 is the number of points in V(t). If B̂

1 
is 

significant, we move to another frequency in order to determine the complete set of estimators, denoted
 
B̂

m
 

with m = 1, …, M, for all M sinusoidal components. The final spectrum is expressed below:

This is shown for the example M1 and S1 units (Figs. 3C,D,G,H); the same expansion coefficients are 
used to construct transfer functions for the response (Figs. 3A,E). Note the low-frequency peak in the re-
sidual spiking activity for both units that matches the respective spontaneous activity (Figs. 3D,H). Finally, a 

Figure 3. Simulated analysis of single unit data from S1 and M1 cortices as a single vibrissa of an awake but immobile rat  
(Kleinfeld et al., 2002, their Fig. 3 and Fig. 5, reprinted with permission from Neuron). A, E, Stimulus-triggered average and 
transfer function between the stimulus and the instantaneous spike rate of sensory and motor units (thin black line) for vibrissa 
stimulation at 5 Hz. The transfer function was computed from a spectral decomposition (T = 100 s; K = 99) of the time series 
of the response. B, F, Spectral power of the unit spike response; full bandwidth Δf = 1.0 Hz. C, G, The spectral power for the 
stimulus-driven part of the response. The height of each arrow corresponds to the magnitude of the complex coefficient for 
power at the fundamental frequency of the stimulus, denoted f

1
, or at the nth harmonic of the stimulus, fn. Only coefficients that 

surpassed the value set by an F-test were accepted and used to reconstruct the transfer functions in panels A and E, respectively. 
D, H, Power for the residual response, found by subtracting the stimulus driven components in the power (panels C and G) from 
the spectrum (panels B and F). For the S1 unit, note the excess power near 5 Hz (arrow in panel D) that is also present in the 
spontaneous activity. Note, too, the presence of low-frequency spiking in the residual activity for the M1 unit as well as in the 
spontaneous activity. I–L, Summary results from a unit to show the peristimulus time histogram (black curve) and the best fit (gray 
curve) at four different stimulation frequencies: 4, 7, 10, and 15 Hz; at all four frequencies, the modulated spike rate captures only 
the fundamental frequency of the stimulus. M, Summary of the relative power at f

1
 for all motor units in the study. A value of 1 

indicates that the unit follows only the fundamental frequency of the stimulus. The height of a bar corresponds to the number of 
separate units. Panels A, B, D, E, F, H, I, J, K, and L plot the mean and two standard error limits.
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measure of the purity of pitch determination is given 
by the ratio of the power at the fundamental to the  
total power:

Of interest, the above measure was found to be 
Ĉ(f

1
)=1 only when the vibrissa stimulation was  

between 5 Hz and 20 Hz (Fig. 3M)—the natural 
whisking frequencies. Linear filtering cannot explain 
such an effect, and it was conjectured that an active 
filtering process, such as the neurological realization 
of a phase-locked loop, underlies this process (Klein-
feld et al., 2002).

Case four
A common issue that arises in the analysis of optical 
imaging data is to remove “fast” noise—that is, fluc-
tuations in intensity that occur on a pixel-by-pixel 
and frame-by-frame basis. The idea is that the imag-
ing data contain features that are highly correlated in 
space, such as underlying cell bodies and processes, 
and highly correlated in time, such as long-lasting 
responses. The imaging data may thus be viewed as 
a space-time matrix of random numbers: i.e., the fast 
noise, with added correlated structure.

With this model in mind, we focus on the case of 
Ca2+ waves in an organotypic culture of rat cortex, 
which contains both neurons and glia. All cells were 
loaded with a calcium indicator, and spontaneous 
activity in the preparation was imaged using a fast-
framing (f

sample
 = 500 Hz), low-resolution (100 × 100 

pixels) confocal microscope (Fig. 4A).

Imaging data takes the form of a three-dimensional 
array of intensities, denoted V(x, y, t). We consider 
expressing the spatial location in terms of a pixel  
index so that each (x, y)  s and the data are now in 
the form of a space-time matrix V(s, t). This matrix 
may be decomposed into the outer product of functions 
of pixel index and functions of time. Specifically,

 
,

where the rank of V(s, t) is the smaller of the pixel or 
time dimensions. For example data (Fig. 4A), there 
are N

t
 = 1200 frames, or time points, and N

s
 = 10,000 

pixels, so that rank{V(s, t)} = N
t
. The above decom-

position is referred to as an SVD (Golub and Kahan, 
1965). The temporal functions satisfy this eigen- 
value equation:,

where the functions F
n
(s) and G

n
(t) are orthonormal, 

so that

and

The spatial function that accompanies each tempo-
ral function is found by inverting the defining equa-
tion, so that the following holds true:

When this decomposition is applied to the Ca2+ 
imaging data (Fig. 4A), we see that the eigenvalue 
spectrum has some very large values for the low-or-
der modes but then rapidly falls to a smoothly de-
creasing function of index (Fig. 5A). (Theoretical  

Figure 4. Denoising of spinning-disk confocal imaging data on 
Ca2+ waves in organotypic culture. A, Selected frames from a 
1200-frame sequence of 100 × 100 pixel data. B, The same data 
set after reconstruction with 25 of the 1200 modes. Denoising is 
particularly clear when the data are viewed as video clips.
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expressions for the baseline distribution may be 
found in Sengupta and Mitra, 1999.) The spatial and 
temporal modes show defined structure for the first 
15 modes; beyond these, the spatial modes appear  
increasingly grainy, and the temporal modes appear 
as fast noise (Figs. 5B,C).

The utility of this decomposition is that only the 
lower-order modes carry information. Thus, we can 

reconstruct the data matrix from only these modes 
and remove the “fast” noise, as follows:

Compared with smoothing techniques, the truncated 
reconstruction respects all correlated features in the 

data and, for example, does not remove sharp edges. 
Reconstruction of the Ca2+-wave data highlights the 
correlated activity by removing fast, grainy-looking 
variability (Fig. 4B).

Case five
The final example concerns the characterization of 
coherent spatiotemporal dynamics. We return to the 
use of voltage-sensitive dyes, this time to image the 
electrical dynamics of turtle visual cortex in response 
to a looming stimulus. Early work had shown that a 
looming stimulus led to the onset of ~20 Hz oscilla-
tions, the γ-band for turtle, in visual cortex. The lim-
ited range of cortical connections suggested this oscil-
lation might be part of wave motion. Yet the raw data, 
even after denoising and broadband filtering, appears 
complex (Fig. 5A): Regions of net depolarization 
sweep across cortex, but no simple pattern emerges.

One possible explanation is that cortex supports 
multiple dynamic processes, each with a unique cen-
ter frequency, that may be decomposed by an SVD 
in the frequency domain. In this method (Mann 
and Park, 1994), the space-time data V(s, t) are first 
projected into a local temporal frequency domain by 
transforming them with respect to a set of tapers:

The index k defines a local frequency index in the 
band [f – Δf/2, f + Δf/2]. For a fixed frequency, f

0
, an 

SVD is performed on this complex matrix:

This yields the following:

Figure 5. SVD of the imaging sequence in Figure 4. A, The spec-
trum for the square of the eigenvalues for the space and time 
modes. Note the excess variance in the roughly 25 dominant 
modes. B, Top 15 spatial modes, Fn(s), plus high-order modes. 
C, Top temporal modes, Gn(t).
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where the rank is invariably set by K. A measure of 
coherence is given by the ratio of the power of the 
leading mode to the total power (Fig. 6B):

A completely coherent response leads to  
while for a uniform random process  
Where  has a peak, it is useful to examine the 
largest spatial mode, F̃

1
(s). The magnitude of this 

complex image gives the spatial distribution of co-
herence at f

0
, while gradients in its phase indicate 

the local direction of propagation.

For the example data (Fig. 6A), this analysis revealed 
linear waves as the dominant mode of electrical  
activity; those at 3 Hz were present with or without 
stimulation while those at 8 through 23 Hz were 
seen only with stimulation and propagate orthogonal  
to the wave at 3 Hz (Figs. 6C, H). It is of biological 
interest that the waves at 3 Hz track the direction of 
thalamocortical input, while those at higher frequen-
cies track a slight bias in axonal orientation (Cosans 
and Ulinski, 1990) that was unappreciated in the 
original work (Prechtl et al., 1997).
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