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Introduction

In neuroscience, the dynamical patterns of electrical activity of neurons provide a crucial bridge between 
cellular and psychological/behavioral levels of analysis. During the last decade or so, a significant 
amount of research has gone into the development of signal processing tools to quantify neuronal 
dynamics. These methods have been applied to a wide variety of neural signals, including EEG/MEG 
and single electrode recordings, as well as more contemporary multielectrode recordings or imaging 
techniques. These quantitative methods have now reached a certain level of maturity, indicated  
by common measures and signal processing algorithms used in research papers, shared analysis  
software (such as Chronux), and pedagogical material in courses. Apart from bridging cellular and 
systems levels of analysis, these methods provide a critical link between experimental data and 
theoretical models. 
 
This short course will provide a survey of topics from this field, including methods for analyzing 
point process signals (spike trains) and continuous process signals (LFP, EEG, behavioral recordings). 
Nonparametric smoothing and spectral estimation techniques will be complemented by parametric 
stochastic process models. Pedagogical lectures in the morning will be followed by tutorial exercises 
participants can carry out on their own laptop computers using data sets and analysis software, which 
will be provided. 

Course Organizer: Partha Mitra, PhD, Cold Spring Harbor Laboratory. Faculty: Hemant Bokil, PhD, 
Cold Spring Harbor Laboratory; Uri Eden, PhD, Boston University; Robert Kass, PhD, Department 
of Statistics, Carnegie Mellon University; David Kleinfeld, PhD, Department of Physics, University 
of California, San Diego; Bijan Pesaran, PhD, Center for Neural Science, New York University; 
Keith Purpura, PhD, Department of Neurology & Neuroscience, Weill Cornell Medical College; 
Sridevi Sarma, PhD, Department of Brain and Cognitive Sciences, Massachusetts Institute of 
Technology; Andrew Sornborger, PhD, Department of Mathematics, University of Georgia; and Ofer 
Tchernichovski, PhD, Department of Biology, City College of New York. 
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Introduction
This chapter introduces concepts fundamental to 
spectral analysis and applies spectral analysis to char-
acterize neural signals. Spectral analysis is a form of 
time series analysis and concerns a series of events 
or measurements that are ordered in time. The goal 
of such an analysis is to quantitatively characterize 
the relationships between events and measurements 
in a time series. This quantitative characterization 
is needed to derive statistical tests that determine 
how time series differ from one another and how 
they are related to one another. Time series analysis 
comprises two main branches: time-domain methods 
and frequency-domain methods. Spectral analysis is 
a frequency-domain method for which we will use 
the multitaper framework (Thomson, 1982; Percival 
and Walden, 1993). The treatment here also draws 
on other sources (Brillinger, 1978; Jarvis and Mitra, 
2001; Mitra and Bokil, 2007).

In this chapter, we will focus on relationships  
within and between one and two time series, known  
as univariate and bivariate time series. Throughout 
this discussion, we will illustrate the concepts with  
experimental recordings of spiking activity and  
local field potential (LFP) activity. The chapter on  
Multivariate Neural Data Sets will extend the treat-
ment to consider several simultaneously acquired 
time series that form a multivariate time series, such 
as in imaging experiments. The chapter on “Appli-
cation of Spectral Methods to Representative Data 
Sets in Electrophysiology and Functional Neuro- 
imaging” will review some of this material and  
present additional examples.

First we begin by motivating a particular problem 
in neural signal analysis that frames the examples in 
this chapter. Second, we introduce signal processing 
and the Fourier transform and discuss practical issues 
related to signal sampling and the problem of alias-
ing. Third, we present stochastic processes and their 
characterization through the method of moments. 
The moments of a stochastic process can be char-
acterized in both the time domains and frequency 
domains, and we will discuss the relation between 
these characterizations. Subsequently, we present the 
problem of scientific inference, or hypothesis test-
ing, in spectral analysis through the consideration of  
error bars. We finish by considering an application of 
spectral analysis involving regression.

Motivation
When a microelectrode is inserted into the brain, 
the main features that are visible in the extracellular 
potential it measures are the spikes and the rhythms 
they ride on. The extracellular potential results from 

currents flowing in the extracellular space, which in 
turn are produced by transmembrane potentials in  
local populations of neurons. These cellular events 
can be fast, around 1 ms for the action potentials 
that appear as spikes, and slow, up to 100 ms, for the 
synaptic potentials that predominantly give rise to 
the LFP. How spiking and LFP activity encode the 
sensory, motor, and cognitive processes that guide 
behavior, and how these signals are related, are fun-
damental, open questions in neuroscience (Steriade, 
2001; Buzsaki, 2006). In this chapter, we will illus-
trate these analysis techniques using recordings of 
spiking and LFP activity in macaque parietal cortex 
during the performance of a delayed look-and-reach 
movement to a peripheral target (Pesaran et al., 
2002). This example should not be taken to limit the 
scope of potential applications, and other presenta-
tions will motivate other examples.

The Basics of Signal Processing
Spiking and LFP activity are two different kinds of 
time series, and all neural signals fall into one of 
these two classes. LFP activity is a continuous process 
and consists of a series of continuously varying volt-
ages in time, x

t
. Spiking activity is a point process, 

and, assuming that all the spike events are identical, 
consists of a sequence of spike times. The counting 
process, N

t
, is the total number of events that occur 

in the process up to a time, t. The mean rate of the 
process, , is given by the number of spike events  
divided by the duration of the interval. If we consider 
a sufficiently short time interval, t = 1 ms, either a 
spike event occurs or it does not. Therefore, we can 
represent a point process as the time derivative of 
the counting process, dN

t
, which gives a sequence of  

delta functions at the precise time of each spike, t
n
. We 

can also represent the process as a sequence of times 
between spikes, τ

n
 = t

n+1
 - t

n
, which is called an inter-

val process. These representations are equivalent but 
capture different aspects of the spiking process. We 
will focus on the counting process, dN

t
. dN

t
 = 1λδt 

when there is a spike and dN
t
 = λδt elsewhere. Note 

that these expressions correct for the mean firing rate 
of the process. As we will see, despite the differences 
between point and continuous processes, spectral 
analysis treats them in a unified way. The following 
sections present some basic notions that underlie  
statistical signal processing and time series analysis. 

Fourier transforms
Time series can be represented by decomposing them 
into a sum of elementary signals. One domain for  
signals, which we call the time domain, is simply 
each point in time. The time series is represented by 
its amplitude at each time point. Another domain 
is the frequency domain and consists of sinusoidal  
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functions, one for each frequency. The process is rep-
resented by its amplitude and phase at each frequency.  
The time and frequency domains are equivalent, 
and we can transform signals between them using 
the Fourier transform. Fourier transforming a signal 
that is in the time domain, xt, will give the values of 
the signal in the frequency domain, ~x( f ). The tilde  
denotes a complex number with amplitude and phase.

x(f) = ∑ exp(–2πiftn) 
N

t = 1

~

Inverse Fourier transforming ~x( f ) transforms it to 
the time domain. To preserve all the features in the 
process, these transforms need to be carried out over 
an infinite time interval. However, this is never  
realized in practice. Performing Fourier transforms 
on finite duration data segments distorts features in 
the signal and, as we explain below, spectral estima-
tion employs data tapers to limit these distortions.

Nyquist frequency, sampling 
theorem, and aliasing
Both point and continuous processes can be repre-
sented in the frequency domain. When we sample a 
process, by considering a sufficiently short interval in 
time, t, and measuring the voltage or the presence 
or absence of a spike event, we are making an  
assumption about the highest frequency in the pro-
cess. For continuous processes, the sampling theorem 
states that when we sample an analog signal that is 
band-limited, so that it contains no frequencies 
greater than the Nyquist rate (B Hz), we can  
perfectly reconstruct the original signal if we sample 

at a sampling rate, Fs =  —1δ t , of at least 2B Hz. The 

original signal is said to be band-limited because it  
contains no energy outside the frequency band given 
by the Nyquist rate. Similarly, once we sample a  
signal at a certain sampling rate, F

s
, the maximum 

frequency we can reconstruct from the sampled  

signal is called the Nyquist frequency,
 

Fs
 —1
2 .

The Nyquist frequency is a central property of all 
sampled, continuous processes. It is possible to sam-
ple the signal more frequently than the bandwidth of 
the original signal, with a sampling rate greater than 
twice the Nyquist rate, without any problems. This is 
called oversampling. However, if we sample the sig-
nal at less than twice the Nyquist rate, we cannot 
reconstruct the original signal without errors. Errors 
arise because components of the signal that exist at a 
higher frequency than Fs

 —1
2

 become aliased into 

lower frequencies by the process of sampling the sig-
nal. Importantly, once the signal has been sampled at 
F

s
, we can no longer distinguish between continuous 

processes that have frequency components greater 

than the Nyquist frequency of Fs
 —1
2

. To avoid the 

problem of aliasing signals from high frequencies into 
lower frequencies by digital sampling, an anti- 
aliasing filter is often applied to continuous analog 
signals before sampling. Anti-aliasing filters act to 
low-pass the signal at a frequency less than the  
Nyquist frequency of the sampling.

Sampling point processes does not lead to the same 
problems as sampling continuous processes. The 
main consideration for point processes is that the 
sampled point process be orderly. Orderliness is 
achieved by choosing a sufficiently short time inter-
val so that each sampling interval has no more than 
one event. Since this means that there are only two 
possible outcomes to consider at each time step, 0 
and 1, analyzing an orderly point process is simpler 
than analyzing a process that has multiple possible 
outcomes, such as 0, 1, and 2, at each time step.

Method of moments for stochastic 
processes 
Neural signals are variable and stochastic owing to 
noise and the intrinsic properties of neural firing.  
Stochastic processes (also called random process-
es) can be contrasted with deterministic processes, 
which are perfectly predictable. Deterministic  
processes evolve in exactly the same way from a par-
ticular point. In contrast, stochastic processes are  
described by probability distributions that govern 
how they evolve in time. Stochastic processes evolve 
to give a different outcome, even if all the samples 
of the process originally started from the same point. 
This is akin to rolling dice on each trial to deter-
mine the neural activity. Each roll of the dice is a 
realization from a particular probability distribution, 
and it is this distribution that determines the proper-
ties of the signal. When we measure neural signals to  
repeated trials in an experiment, we assume that the 
signals we record on each trial are different realizations 
or outcomes of the same underlying stochastic process.

Another powerful simplification is to assume that 
the properties of the stochastic process generating 
the neural signals within each trial are stationary 
and that their statistical properties don’t change with 
time—even within a trial. This is clearly not strictly 
true for neural signals because of the nonstationarities 
in behavior. However, under many circumstances, a 
reasonable procedure is to weaken the stationarity  
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assumption to short-time stationarity. Short-time  
stationarity assumes that the properties of the  
stochastic process have stationarity for short time  
intervals, say 300-400 ms, but change on longer time 
scales. In general, the window for spectral analysis is 
chosen to be as short as possible to remain consistent 
with the spectral structure of the data; this window 
is then translated in time. Fundamental to time- 
frequency representations is the uncertainty prin-
ciple, which sets the bounds for simultaneous  
resolution in time and frequency. If the time- 
frequency plane is “tiled” so as to provide time 
and frequency resolutions Δt = N by Δf = W, then  
NW ≥ 1. We can then estimate the statistical prop-
erties of the stochastic process by analyzing short 
segments of data and, if necessary and reasonable, 
averaging the results across many repetitions or  
trials. Examples of time-frequency characterizations 
are given below. Note that this presentation uses 
“normalized” units. This means that we assume the 
sampling rate to be 1 and the Nyquist frequency  
interval to range from –½ to ½. The chapter Appli-
cation of Spectral Methods to Representative Data 
Sets in Electrophysiology and Functional Neuro-
imaging presents the relationships below in units of 
time and frequency.

Spectral analysis depends on another assumption: 
that the stochastic process which generates the neu-
ral signals has a spectral representation.

xt = ∫  x(f)exp(2πift)df 
½

–½

~

Remarkably, the same spectral representation can 
be assumed for both continuous processes (like LFP 
activity) and point processes (like spiking activity),  
so the Fourier transform of the spike train, t

n
, is  

as follows:

dN(f) = ∑ exp(2πiftn) 
N

n = 1

~

The spectral representation assumes that underlying 
stochastic processes generating the data exist in the 
frequency domain, but that we observe their real-
izations as neural signals, in the time domain. As a  
result, we need to characterize the statistical proper-
ties of these signals in the frequency domain: This is 
the goal of spectral analysis.

The method of moments characterizes the statisti-
cal properties of a stochastic process by estimating 
the moments of the probability distribution. The first 
moment is the mean; the second moments are the 

variance and covariance (for more than one time  
series), and so on. If a stochastic process is a Gaussian 
process, the mean and variance or covariances com-
pletely specify it. For the spectral representation, we 
are interested in the second moments. The spectrum 
is the variance of the following process:

SX(f)δ (f – f ʹ) = E[x*(f)x(f ʹ)]~ ~

SdN(f)δ (f – f ʹ) = E[dN*(f)dN(f ʹ)]~ ~

The delta function indicates that the process is  
stationary in time. The asterisk denotes complex 
conjugation. The cross-spectrum is the covariance of 
two processes:

SXY(f)δ (f – f ʹ) = E[x*(f)y(f ʹ)]~ ~

The coherence is the correlation coefficient between 
each process at each frequency and is simply the  
covariance of the processes normalized by  
their variances.

CXY(f) =
SXY(f)

Sx(f)Sy(f)  

This formula represents the cross-spectrum between 
the two processes, divided by the square root of  
the spectrum of each process. We have written this 
expression for two continuous processes; analo-
gous expressions can be written for pairs of point- 
continuous processes or point-point processes by 
substituting the appropriate spectral representation. 
Also, we should note that the assumption of station-
arity applies only to the time interval during which 
we carry out the expectation.

Multitaper spectral estimation
The simplest estimate of the spectrum, called the 
periodogram, is proportional to the square of the data 
sequence, |~xtr( f )|2. This spectral estimate suffers 
from two problems. The first is the problem of bias. 
This estimate does not equal the true value of the 
spectrum unless the data length is infinite. Bias arises 
because signals at different frequencies are mixed  
together and “blurred.” This bias comes in two forms: 
narrow-band bias and broad-band bias. Narrow-band 
bias refers to bias in the estimate due to mixing sig-
nals at different nearby frequencies. Broad-band bias 
refers to mixing signals at different frequencies at  
distant frequencies. The second problem is the 
problem of variance. Even if the data length were  
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infinite, the periodogram spectral estimate would 
simply square the data without averaging. As a  
result, it would never converge to the correct value 
and would remain inconsistent.

Recordings of neural signals are often sufficiently  
limited so that bias and variance can present  
major limitations in the analysis. Bias can be  
reduced, however, by multiplying the data by a data  
taper, w

t
, before transforming to the frequency- 

domain, as follows:

x(f) = ∑ wtxt exp(–2πift) 
N

t = 1

~

Using data tapers reduces the influence of distant 
frequencies at the expense of blurring the spectrum 
over nearby frequencies. The result is an increase in 
narrow-band bias and a reduction in broad-band bias. 
This practice is justified under the assumption that 
the true spectrum is locally constant and approxi-
mately the same for nearby frequencies. Variance is 
usually addressed by averaging overlapping segments 
of the time series. Repetitions of the experiment also 
give rise to an ensemble over which the expectation 
can be taken, but this precludes the assessment of 
single-trial estimates.

An elegant approach toward the solution of both 
the above problems has been offered by the multi-
taper spectral estimation method, in which the data 
are multiplied by not one, but several, orthogonal  
tapers and Fourier-transformed in order to obtain 
the basic quantity for further spectral analysis. The  
simplest example of the method is given by the  
direct multitaper estimate, S

MT 
(f), defined as the  

average of individual tapered spectral estimates,

xk(f) = ∑ wt(k)xt exp(–2πift) 
N

t = 1

~

SMT(f) = —∑ |xk (f)|2 
K

k = 1

~1
K

The w
t
(k) (k = 1, 2, … , K) constitute K orthogo-

nal taper functions with appropriate properties. 
A particular choice for these taper functions, with  
optimal spectral concentration properties, is given by 
the discrete prolate spheroidal sequences, which we 
will call “Slepian functions” (Slepian and Pollack, 
1961). Let w

t
(k, W, N) be the kth Slepian function 

of length N and frequency bandwidth parameter W. 
The Slepians would then form an orthogonal basis 
set for sequences of length, N, and be characterized 

by a bandwidth parameter W. The important feature 
of these sequences is that, for a given bandwidth 
parameter W and taper length N, K = 2NW – 1  
sequences, out of a total of N, each having their  
energy effectively concentrated within a range  
[–W, W] of frequency space.

Consider a sequence w
t
 of length N whose Fourier 

transform is given by the formula

U(f) = ∑ wt exp(–2πift). 
N

t = 1

 Then we can consider 

the problem of finding sequences w
t
 so that the spec-

tral amplitude U(f) is maximally concentrated in the 
interval [–W, W]. Maximizing this concentration pa-
rameter, subject to constraints, yields a matrix eigen-
value equation for w

t
(k, W, N). The eigen- 

vectors of this equation are the Slepians. The  
remarkable fact is that the first 2NW eigenvalues 


k
(N,W) (sorted in descending order) are each  

approximately equal to 1, while the remainder  
approximate zero. The Slepians can be shifted in 
concentration from [–W, W] centered around zero 
frequency to any nonzero center frequency interval 
[f

0 
– W, f

0
 + W]  by simply multiplying by the appro-

priate phase factor exp(2π if
0
t)—an operation known 

as demodulation.

The usual strategy is to select the desired analy-
sis half-bandwidth W to be a small multiple of 
the Raleigh frequency 1/N, and then to take the  
leading 2NW – 1 Slepian functions as data tapers 
in the multitaper analysis. The remaining functions 
have progressively worsening spectral concentra-
tion properties. For illustration, in the left column of  
Figure 1, we show the first four Slepian functions 
for W = 5/N. In the right column, we show the 
time series example from the earlier subsection 
multiplied by each of the successive data tapers. In 
the left column of Figure 2, we show the spectra of 
the data tapers themselves, displaying the spectral  
concentration property. The vertical marker denotes 
the bandwidth parameter W. Figure 2 also shows the 
magnitude-squared Fourier transforms of the tapered 
time series presented in Figure 1. The arithmetic  
average of these spectra for k = 1, 2, . . . , 9 (note that 
only 4 of 9 are shown in Figs. 1 and 2) gives a direct 
multitaper estimate of the underlying process.

Figure 3A shows the periodogram estimate of the 
spectrum based on a single trial of LFP activity dur-
ing the delayed look-and-reach task. The variability 
in the estimate is significant. Figure 3B presents the 
multitaper estimate of the spectrum on the same 
data with W = 10 Hz, averaged across 9 tapers. This  
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estimate is much smoother and reveals the presence 
of two broad peaks in the spectrum, at 20 Hz and 
60 Hz. Figure 3C shows the multitaper spectrum  
estimate on the same data with W = 20 Hz. This  
estimate is even smoother than the 10 Hz, which 
reflects the increased number of tapers available to 

average across (19 tapers instead of 9). However, 
the assumption that the spectrum is constant with 
the 20 Hz bandwidth is clearly wrong and leads to  
noticeable distortion in the spectrum, in the form of 
a narrow-band bias. Figure 3D shows the multitaper 
estimate with bandwidth W = 10 Hz averaged across 
9 trials. Compared with Figure 3B, this estimate is  
noticeably smoother and contains the same frequency  
resolution. This series illustrates the advantages of 
multitaper estimates and how they can be used to 
improve spectral resolution.

Bandwidth selection
The choice of the time window length N and the 
bandwidth parameter W is critical for applications. 
No simple procedure can be given for these choices, 
which in fact depend on the data set at hand, and 
are best made iteratively using visual inspection and 
some degree of trial and error. 2NW gives the num-
ber of Raleigh frequencies over which the spectral 
estimate is effectively smoothed, so that the vari-
ance in the estimate is typically reduced by 2NW . 
Thus, the choice of W is a choice of how much to 
smooth. In qualitative terms, the bandwidth param-
eter should be chosen to reduce variance while not 
overly distorting the spectrum by increasing narrow-
band bias. This can be done formally by trading off an  
appropriate weighted sum of the estimated variance 
and bias. However, as a rule, we find fixing the time 
bandwidth product NW at a small number (typically 

Figure 1. Slepian functions in the time domain. Left panels: First 
four Slepian functions for NW = 5. Right panels: Data sequence 
multiplied by each Slepian data taper on left.

Figure 2. Slepian functions in the frequency domain. Left panel: 
spectra of Slepian functions from left panels of Figure 1. Right panel: 
spectra of data from right panels of Figure 1.

Figure 3. Spectrum of LFP activity in macaque lateral intra- 
parietal area (LIP) during delay period before a saccade-and-reach  
to preferred direction. A, Single trial, 500 ms periodogram  
spectrum estimate. B, Single trial, 500 ms, 10 Hz multitaper spec-
trum estimate. C, Single trial, 500 ms, 20 Hz multitaper spectrum 
estimate. D, Nine-trial average, 500 ms, 10 Hz multitaper spec- 
trum estimate. a.u. = arbitrary units.

A

C

B

D
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3 or 4), and then varying the window length in time 
until sufficient spectral resolution is obtained, to be a  
reasonable strategy. It presupposes that the data are 
examined in the time-frequency plane so that N may 
be significantly smaller than the total data length.

Figure 4 illustrates these issues using two spectrogram 
estimates of the example LFP activity averaged across 
9 trials. Each trial lasts approximately 3 s and consists 
of a 1 s baseline period, followed by a 1–1.5 s delay 
period, during which a movement is being planned. 
The look-reach movement is then executed. Each 
spectrogram is shown with time on the horizontal 
axis, frequency on the vertical axis, and power color-
coded on a log base-10 scale. Figure 4A shows the 
spectrogram estimated using a 0.5 s duration analysis 
window and a 10 Hz bandwidth. The time-frequency 
tile this represents is shown in the white rectangle. 
This estimate clearly shows the sustained activity  
following the presentation of the spatial cue at 0 s 
that extends through the movement’s execution.  
Figure 4B shows a spectrogram of the same data  
estimated using a 0.2 s duration analysis window 
and a 25 Hz bandwidth. The time-frequency tile for 
this estimate has the same area as Figure 4A, so each  
estimate has the same number of degrees of free-
dom. However, there is great variation in the time- 
frequency resolution trade-off between these  
estimates: Figure 4B better captures the transients in 
the signal, at the loss of significant frequency resolu-
tion that distorts the final estimate. Ultimately, the 
best choice of time-frequency resolution will depend 
on the frequency band of interest, the temporal  
dynamics in the signal, and the number of trials 
available for increasing the degrees of freedom of a 
given estimate.

Calculating error bars
The multitaper method confers one important  
advantage: It offers a natural way of estimating  
error bars corresponding to most quantities obtained 
in time series analysis, even if one is dealing with an 
individual instance within a time series. Error bars 
can be constructed using a number of procedures, but 
broadly speaking, there are two types. The funda-
mental notion common to both types of error bars 
is the local frequency ensemble. That is, if the spec-
trum of the process is locally flat over a bandwidth 
2W, then the tapered Fourier transforms ~x

k
( f ) con-

stitute a statistical ensemble for the Fourier transform 
of the process at the frequency, f

o
. This locally flat 

assumption and the orthogonality of the data tapers 
mean that the ~x

k
( f ) are uncorrelated random vari-

ables having the same variance. This provides one 
way of thinking about the direct multitaper estimate  
presented in the previous sections: The estimate con-
sists of an average over the local frequency ensemble.

The first type of error bar is the asymptotic error bar. 
For large N, ~xk( f ) may be assumed to be asymptoti-
cally, normally distributed under some general  
circumstances. As a result, the estimate of the spec-
trum is asymptotically distributed according to a χ 2

dof
 

distribution scaled by 
S(f)
dof . The number of degrees 

of freedom (dof ) is given by the total number of data 
tapers averaged to estimate the spectrum. This would 
equal the number of trials multiplied by the number 
of tapers.

For the second type of error bar, we can use the  
local frequency ensemble to estimate jackknife error 
bars for the spectra and all other spectral quantities 
(Thomson and Chave, 1991; Wasserman, 2007). The 
idea of the jackknife is to create different estimates  
by, in turn, leaving out a data taper. This creates a 
set of spectral estimates that forms an empirical dis-
tribution. A variety of error bars can be constructed  
based on such a distribution. If we use a variance-
stabilizing transformation, the empirical distribution 
can be well approximated using a Gaussian distribu-
tion. We can then calculate error bars according to 
the normal interval by estimating the variance of 
the distribution and determining critical values that 
set the error bars. Inverting the variance-stabilizing 
transformation gives us the error bars for the original 
spectral estimate. This is a standard tool in statistics 
and provides a more conservative error bar than the 
asymptotic error bar. Note that the degree to which 
the two error bars agree constitutes a test of how well 
the empirical distribution follows the asymptotic  
distribution. The variance-stabilizing transforma-

Figure 4. Spectrogram of LFP activity in macaque LIP averaged 
across 9 trials of a delayed saccade-and-reach task. Each trial is 
aligned to cue presentation, which occurs at 0 s. Saccade and reach 
are made at around 1.2 s. A, Multitaper estimate with duration of 
500 ms and bandwidth of 10 Hz. B, Multitaper estimate with dura-
tion of 200 ms and bandwidth 25 Hz. White rectangle shows then 
time-frequency resolution of each spectrogram. The color bar shows 
the spectral power on a log scale in arbitrary units. 

A B
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tion for the spectrum is the logarithm. The variance- 
stabilizing transformation for the coherence, the 
magnitude of the coherency, is the arc-tanh.

As an example, Figure 5A shows asymptotic and  
Figure 5B empirical jackknife estimates of the spec-
tral estimate illustrated in Figure 3D. These are 
95% confidence intervals and are largely the same 
between the two estimates. This similarity indicates 
that, for these data, the sampling distribution of the 
spectral estimate follows the asymptotic distribution 
across trials and data tapers. If we were to reduce the 
estimate’s number of degrees of freedom by reducing 
the number of trials or data tapers, we might expect 
to see more deviations between the two estimates, 
with the empirical error bars being larger than the 
asymptotic error bars.

Correlation functions
Neural signals are often characterized in terms of  
correlation functions. Correlation functions are 
equivalent to computing spectral quantities but with 
important statistical differences. For stationary pro-
cesses, local error bars can be imposed for spectral 
estimates in the frequency domain. This is not true 
for correlation functions, even assuming stationarity, 
because error bars for temporal correlation functions 
are nonlocal. Nonlocality in the error bars means that 
uncertainty about the correlation function at one lag 
is influenced by the value of the correlation function 
across other lags. The precise nature of the nonlocality  
relies on the temporal dependence within the  
underlying process. Consequently, correlation func-
tion error bars must be constructed by assuming there 
are no dependencies between different time bins. 
This is a far more restrictive assumption than the 
one holding that neighboring frequencies are locally 
flat and rarely achieved in practice. Other problems  
associated with the use of correlation functions are 

that if the data contain oscillatory components, they 
are compactly represented in frequency space and 
lead to nonlocal effects in the correlation function. 
Similar arguments apply to the computation of corre-
lation functions for point and continuous processes. 
One exception is for spiking examples in which there 
are sharp features in the time-domain correlation 
functions, e.g., owing to monosynaptic connections.
 
Figure 6 illustrates the difference between using spec-
tral estimates and correlation functions. Figure 6A  
shows the spectrum of spiking activity recorded 
in macaque parietal cortex during a delay period  
before a coordinated look-and-reach. The duration 
of the spectral estimate is 500 ms, the bandwidth is  
30 Hz, and the activity is averaged over nine trials. 
Thin lines show the empirical 95% confidence inter-
vals. Figure 6B shows the auto-correlation function 
for the same data, revealing some structure around 
short lags and inhibition at longer lags. There is a 
hint of some ripples, but the variability in the esti-
mate is too large to see them clearly. This is not too 
surprising, because the correlation function estimate 
is analogous to the periodogram spectral estimate, 
which also suffers from excess statistical variability. 
In contrast, the spectrum estimate clearly reveals 
the presence of significant spectral suppression and a 
broad spectral peak at 80 Hz. The dotted line shows 
the expected spectrum from a Poisson process having 
the same rate.

Coherence
The idea of a local frequency ensemble motivates 
multitaper estimates of the coherence between two-
point or continuous processes. Given two time series 

Figure 5. 95% confidence error bars for LFP spectrum shown  
in Figure 3D. A, Asymptotic error bars assuming chi-squared  
distribution. B, Empirical error bars using leave-one-out jack- 
knife procedure.

A B

Figure 6. Spike spectrum and correlation function of spiking  
activity in macaque LIP during delay period before a saccade-and-
reach to the preferred direction. A, Multitaper spectrum estimate 
duration of 500 ms; bandwidth 15 Hz averaged across 9 trials. Thin 
lines show 95% confidence empirical error bars using leave-one-out 
procedure. Dotted horizontal line shows firing rate. B, Correlation 
function estimate from which shift predictor has been subtracted. 
a.u. = arbitrary units.

A B
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and the corresponding multiple tapered Fourier trans-
forms ~x

k
( f ), ~y

k
( f ), the following direct estimates can 

be defined for the coherence function:

xk (f)yk(f)
k 

~

CXY (f) =

~1
K

 —∑ *

Sx(f)Sy(f)  

This definition allows us to estimate the coherence 
from a single trial. Estimating the coherence presents 
many of the same issues as estimating the spectrum, 
except that more degrees of freedom are needed 
to ensure a reasonable estimate. In common with 
spectrum estimates, the duration and bandwidth of 
the estimator need to be chosen to allow sufficient 
degrees of freedom in the estimator. Increasing the 
number of trials will increase the effective resolution 
of the estimate. 

Figure 7 shows the coherence and correlations 
between two simultaneously recorded spike 
trains from macaque parietal cortex averaged  
over nine trials. Figure 7A shows the coherence  
estimated with 16 Hz bandwidth. The horizontal 
dotted line represents expected coherence for this 
estimator when there is no coherence between the 
spike trains. The coherence significantly exceeds this 
threshold, as shown by the 95% confidence inter-
vals, in a broad frequency band. Figure 7B illustrates 
the coherence estimated with a 30 Hz bandwidth. 
The variability in the estimate is reduced, as is the 
noise floor of the estimator, as shown by the lower  
horizontal dotted line. Figure 7C shows the cross- 
correlation function for these data. Here, too, there 

is structure in the estimate, but the degree of vari-
ability lowers the power of the analysis.

Regression using spectral feature 
vectors
Detection of period signals is an important problem 
that occurs frequently in the analysis of neural data. 
Such signals can arise as a result of periodic stimu-
lation and can manifest as 50/60 Hz line noise. We 
pursue the effects of periodic stimulation in the mul-
tivariate case in the next chapter Multivariate Neural 
Data Sets: Image Time Series, Allen Brain Atlas. As 
discussed therein, certain experiments that have no 
innate periodicity may also be cast into a form that 
makes them amenable to analysis as periodic stimuli. 
We now discuss how such components may be de-
tected and modeled in the univariate time series by 
performing a regression on the spectral coefficients.

Periodic components are visible in preliminary  
estimates as sharp peaks in the spectrum, which, for 
multitaper estimation with Slepians, appear with flat 
tops owing to narrow-band bias. Consider one such  
sinusoid embedded in colored noise:

x(t) = A cos(2π f t + ϕ) + η(t)

It is customary to apply a least-squares procedure to 
obtain A and φ, by minimizing the sum of squares 

∑|x(t) – A cos(2π f0t + φ )|2

t
. However, this is a 

nonlinear procedure that must be performed numeri-
cally; moreover, it effectively assumes a white-noise  
spectrum. Thomson’s F-test offers an attractive  
alternative within the multitaper framework by  
reducing the line-fitting procedure to a simple  
linear regression.

Starting with a data sequence containing N samples, 
multiplying both sides of the equation by a Slepian 
taper w

k
(t) with bandwidth parameter 2W, and Fou-

rier transforming, one obtains this result:

xk(f ) = μUk(f – f0) + μ *Uk(f – f0)  + Nk(f)∼

Here μ = A exp(iφ) and U
k
(f) and N

k
(f) are the  

Fourier transforms of w
k
(f) and η(t), respectively. If fo 

is larger than the bandwidth W, then f  - fo 
 and f  + fo  

are separated by more than 2W, and U
k 
(f  - fo) and 

U
k
(f  + fo) have minimal overlap. In that case, one 

can set f  = fo 
and neglect the U

k
(f  + fo) term to obtain 

the following linear regression equation at f  = fo:

xk(f ) = μUk(0) + Nk(f 0)
∼

Figure 7. Spike coherence and cross-correlation function for  
spiking activity of two simultaneously recorded neurons in macaque 
LIP during delay period before a saccade-and-reach to the preferred 
direction for both cells. A, Multitaper coherence estimate duration 
of 500 ms; bandwidth 16 Hz averaged across 9 trials. Thin lines 
show 95% confidence empirical error bars using leave-one-out 
procedure. Dotted horizontal line shows expected coherence under 
the null hypothesis that coherence is zero. B, Multitaper coherence 
estimate duration of 500 ms; bandwidth 30 Hz averaged across 9 
trials. Conventions as for A. C, Cross-correlation function estimate 
from which shift predictor has been subtracted.

A CB
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The solution is given by

μ (f 0) =
Uk(0) xk (f 0)

k = 1 
~∑

K

|Uk(0)| 2
k = 1 
∑

K

The goodness of fit of this model may be tested  
using an F-ratio statistic with (2, 2K − 2) degrees 
of freedom, which is usually plotted as a function of  
frequency to determine the position of the significant 
sinusoidal peaks in the spectrum,

F(f) =
|Uk(0)| 2

k = 1 
∑

K

(K – 1)|μ (f)|2

k = 1 
|xk (f) – μ (f)Uk(0) | 2~∑

K

Once an F-ratio has been calculated, peaks deemed 
significant by the F-test, and which exceed the signif-
icance level 1–1/N, may be removed from the origi-
nal process in order to obtain a reshaped estimate of 
the smooth part of the spectrum:

Sreshaped(f) =
k = 1 i 

|xk (f) – ∑μ iUk(f  – fi)|2~∑
K

 —1
K

This reshaped estimate may be augmented with the 
previously determined line components, to obtain 
a so-called mixed spectral estimate. This provides 
one of the more powerful applications of the multi-
taper methodology, since, in general, estimating such 
mixed spectra is difficult.
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Introduction
Recent technological advances have led to a tre-
mendous increase in the dimensionality of com-
monly acquired neural signals. For example, micro-
electrode measurements, electroencephalography 
(EEG), and magnetoencephalography (MEG) can 
record 100-300 channels simultaneously; images 
acquired in optical imaging comprise several thou-
sand pixels; and volumetric imaging techniques such 
as functional magnetic resonance imaging (fMRI) 
provide signal measurements at tens of thousands of 
voxels. Although the availability of such data holds 
the promise of allowing researchers to look beyond 
the activity of individual neurons to study local and 
global neuronal networks, it also poses significant 
challenges for their analysis and interpretation.

The previous chapter in this short course, Spectral 
Analysis for Neural Signals, illustrated how nonpara-
metric spectral estimation methods can be used to  
obtain insight into the structure of correlations in uni-
variate and bivariate time series data. In this chapter, 
we extend that discussion to encompass multivariate 
data. First, we begin by discussing the singular value 
decomposition (SVD) and show how this technique 
may be used in both time and frequency domains in  
order to reduce the dimensionality of a multivariate data 
set and for denoising. Second, we discuss how the SVD 
may be combined with the Thomson F-test for lines 
(discussed in the previous chapter) to extract stimulus 
features from optical imaging experiments with repeated  
stimuli. Third, the oral presentation illustrates the use 
of clustering methods and SVD for analyzing data ob-
tained from genomewide expression studies of the adult 
mouse brain. In keeping with the nature of this chap-
ter, our discussion will be brief. More details may be 
found in a recent book on the analysis of neural time 
series data (Mitra and Bokil, 2008) and in a number of 
specialized textbooks on linear algebra (Strang, 1998), 
multivariate statistics (Anderson, 1984), and time se-
ries analysis (Percival and Walden, 1993).

Matrix Factorizations: Singular 
Value Decomposition
Matrix factorizations are a set of methods in linear 
algebra for expressing a given matrix as a product of 
other, simpler matrices. Examples include the LU  
decomposition, in which a matrix is a written as a 
product of a lower triangular and upper triangular 
part; the QR decomposition, in which a matrix is 
written as a product of a unitary matrix Q and an  
upper triangular matrix R; and the eigenvalue  
decomposition, in which a square matrix with all eigen- 
values distinct is expressed as a product of the matrices  
comprising its eigenvalues and eigenvectors.

While each decomposition technique mentioned 
above has use in specific problems (for example, the 
LU decomposition arises in solving systems of linear 
equations), the most useful technique from a data 
analysis perspective is arguably the SVD. The SVD 
of a matrix M is given by the following equation:

  M = UV†,  (1)

where U and V are unitary matrices viz. UU† = VV† = I  
and  is a diagonal matrix of real numbers. When M 
is a p  q matrix (with p  q), U is a p  q matrix, and  
 = diag (

1
, 

2
, …, 

q
) and V are q  q matrices. Let-

ting u
i
 and v

i
 denote the ith columns of U and V, respec-

tively, it can be shown that Mu
i 
= 

i 
v

i
 and Mv

i 
= 

i
u

i
. 

i
 

are known as singular values, and u
i
 and  vi are known 

as the left and right singular vectors, respectively. 

The following properties of the SVD are worthy  
of note:
 (a)  When M is hermitian (i.e., M = M†), the eigen-

values of M are its singular values. In general, 
this is not true: Singular values are always real 
and positive (for matrices with real entries, the 
singular vectors are also real), whereas eigen-
values are, in general, complex. Furthermore, 
eigenvalues can be defined only for square ma-
trices, whereas the SVD exists for any matrix. 

 (b)   The SVD is closely related to principal com-
ponents analysis. Interpreting the rows of M 
as p samples of q variables, and assuming that 
the mean of each column is zero makes M†M/p  
the sample covariance matrix. Using Equation 
1, M†M is given by the formula below:

      M†M = V2V1 (2)
     and we have,
      M†MV = 2V (3)
      Therefore, the singular vectors v

i 
are the 

eigenvectors of the sample covariance matrix, 
i.e., the principal components, and i

2/p are 
the variances along the principal directions.

 (c)  For a p  q matrix whose entries are indepen-
dent, identically distributed Gaussian random 
variables with standard deviation , the density  
of singular values is given by the following:

 

 

 
  (4)

     where 
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   (Denby and Mallows, 1991; Sengupta and  
Mitra, 1999). As illustrated below, this  
formula provides a principled method for  
separating the signal and noise subspaces. 
A general formula can also be derived that  
includes correlations in the noise (Sengupta 
and Mitra, 1999).

SVD in the time domain 
The simplest way to apply techniques such as the 
SVD to multivariate time-series data is to cast such 
data into a matrix M(t,x), where t  denotes the acqui-
sition time and x denotes the spatial variable being 
measured. Thus, we write:

   (5)

The left singular vectors are functions of time (and 
are referred to as temporal modes), and the right singu-
lar vectors are functions of the spatial variables (and 
are referred to as spatial modes). Although casting the 
data into this matrix form ignores the spatial rela-
tionship between the spatial variables, x, it can still 
provide useful insight into the structure of the data, 
as illustrated below.

Figure 1 shows the sorted singular values for a sample 
fMRI data set. Five hundred and fifty echo planar im-
ages were acquired for 110 s at 5 Hz during binocular 
stimulation by a pair of flickering red LED patterns 
(Mitra et al., 1997). Each image was masked from the 
set of original 64 × 64 pixel images, and the resulting 
image is composed of 1877 pixels and 550 samples. 
The SVD was performed on this 1877 × 550 matrix. 

Note the shape of the singular value plot, which dis-
plays an initial rapid drop followed by a slower decay. 
This separation between a fast and slow decay is quite 
common, the slowly varying part corresponding prin-
cipally to noise. In fact, for this data set, the uncor-
related noise formula of Equation 4 provides a good 
fit for all but the 50 highest singular values, and an 
approximate signal subspace may be defined by the 
corresponding singular vectors. But even when an 
explicit fit is unavailable, the sum in Equation 5 may 
be truncated to keep only those singular values that 
are higher than the “knee” of the curve in Figure 1. 
Finally, truncation may be carried out so as to capture 
a certain fraction of the total variance (see property 
(b), above). Each of these methods serves to denoise 
the data and to reduce its dimensionality.

Once a reduction has been carried out (as per the 
discussion in the previous paragraph), leading tem-
poral and spatial modes may be studied in order to 
obtain understanding of the data. Figure 2 shows 
the average spectrum computed from the 10 lead-
ing temporal modes for an fMRI data set collected 
using rapid, single-shot gradient-echo echo-planar 
imaging (EPI) at 7T, with a repetition time (TR) of  
450 ms. In this experiment, visual stimuli were  
presented in 16.2-s blocks with 22-s control periods. 
Two different visual stimuli were used, and these were 
presented in alternating blocks (e.g., ABABAB). 
This resulted in two stimulus paradigm frequencies: 
0.0262 Hz (corresponding to the AB frequency) and 
0.0131 Hz (corresponding to the frequency of A 

Figure 1. Example of sorted singular values determined by the 
space-time SVD.The tail of the singular value spectrum (solid 
line) is fit by the theoretical density of singular values for a 
pure noise matrix (dashed line). The range of this plot has been 
truncated to highlight the tail of the spectrum. Reprinted from 
Mitra and Pesaran, 1999, their Figure 8, with permission of the 
Biophysical Society.

Figure 2. Average spectrum computed from the 10 largest 
principal components (thick line) from an fMRI data set, plotted 
with the estimated spectra of the monitored respiratory signal 
(thin line) and cardiac signal (dashed line). Courtesy of Partha 
Mitra and Wayne King.
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and B alone). Respiratory and cardiac signals were 
collected simultaneously with magnetic resonance 
(MR) acquisition, and the estimated spectra of those 
time series are also shown in the figure. By compar-
ing the average principal component spectrum with 
the respiration and cardiac spectra, one can visually 
determine that the spectral peaks at ~0.33 Hz and 
~0.66 Hz are very likely the result of respiratory fluc-
tuations. Thus, in this case, the leading components 
of the time domain SVD contain physiological re-
sponses that are unrelated to the stimulus response 
of interest. However, at frequencies near the stimu-
lus frequency (near DC), less of a contribution ap-
pears to be made by the physiological signals, and 
the power in the principal components is likely the 
result of a stimulus response. Thus, noise affects vari-
ous frequencies differently, suggesting the need for a 
frequency-localized analysis, discussed next.

Frequency domain SVD: factorization 
of the cross-spectral matrix
The previous chapter in this short course discussed 
the concept of a cross-spectrum. For multiple chan-
nels, this generalizes to the cross-spectral matrix 
S

ij
(f). This is the matrix

   (6)

whose multitaper estimate is given by the follow- 
ing formula:
 
   (7)

Here x̃
ik
(f) denotes the Fourier transform of the data 

with the ith taper. Since this matrix is Hermitian, it 
has real eigenvalues, and its eigenvalue decomposi-
tion can be expressed as follows:

 . (8)

(f) are known as eigenspectra, and the N × N 
matrix of cross-spectra has thus been reduced to N 
eigenspectra. These eigenspectra can be further con-
densed into a global coherence by taking the frac-
tional energy captured by the leading eigenspectrum 
as a fraction of the total energy at a given frequency:

   (9)

This is a number between 0 and 1. If C
G
(f) is 1, this 

means that the cross-spectral matrix S
ij
(f) is rank 1, at 

that frequency, and that all the processes are multiples 
of a single process, so there is perfect correlation. 

The multitaper approach provides a fast algorithm 
for estimating this global coherence and the lead-
ing eigenspectra without having to first compute the 
cross-spectral matrix. One performs an SVD directly 
on the tapered Fourier transforms x̃

ik
(f) of the indi-

vidual time series, x
i
(t) as follows:

   
  (10)

Substituting Equation 10 in Equation 7, using the  
orthonormality of v(k; f) , and comparing with 
Equation 8 gives us (f) = |(f)|2. Note that since S

ij
(f) is N × N, and N can become large—especially 

in applications with image time series—this proce-
dure involving an N × K matrix may take the compu-
tation from being intractable to being tractable.

As an example, consider the visual stimulation  
experiments used in Figure 2. The global coherence in 
the presence or absence of visual stimulation is shown 
in Figure 3 (solid and dashed lines, respectively).  
The leading spatial eigenmodes for low center  
frequencies are shown in Figure 4. The stimulus  
response within the visual cortex during visual  
stimulation can be seen in the two lowest-frequency 
spatial modes in Figure 4.

Harmonic Analysis for Periodized 
Data
The previous chapter discussed the problem of  
detecting periodic signals buried within a noisy 
background using the Thomson F-test. Here we 
show how the same method may be used to analyze 
imaging experiments with repeated, not necessarily  
periodic, stimuli.

The basic idea is that stimuli presented repeatedly 
may be rearranged into a periodic pattern that makes 
them amenable to harmonic analysis: the so-called pe-
riodic stacking method (Sornborger et al., 2003a,b). 
In a typical repeated stimulation experiment, the 
subject is exposed M times to a set of N stimuli  
(often in random order). The data can be rearranged 
to form a periodic sequence such that the stimuli  
appear in order. For example, a sequence of responses 
to the stimulus sequence ABCCACBBCABA..., can 
be rearranged in the form ABCABCABCABC... 
Since the stimuli now appear periodically, the  
rearranged time series can be decomposed into a  
periodic response with period NT (T being the time 
of presentation of each stimulus) and noise. It can  
therefore be analyzed using the Thomson F-test. The 
spectrum of the rearranged data set should exhibit peaks 
at harmonic multiples of the fundamental frequency  
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f
0
 = 1/NT. The periodic component is itself composed 

of a generalized response to any stimulus (called the 
nonspecific response) and responses that are specific 
to individual stimuli. The nonspecific response is 
rarely of interest and can be shown to correspond to 
the peaks in the spectrum at integer multiples of Nf

0
. 

The peaks at the remaining harmonics constitute 
the specific response. Because the data are noisy and 
high-dimensional, it is of course preferable to apply 
this procedure to the temporal modes obtained from 
an SVD rather than to the time series of the indi-
vidual pixel responses.
 
Figure 5 shows the spectra of the temporal modes for 
a sample optical imaging data set. The data set was 
taken from cat visual cortex, using a moving grat-
ing stimulus. Optical images measuring the cortical  

reflectance of 605 nm light were acquired at 15 Hz for 
a duration of T = 34 s and were subsequently filtered 
and subsampled at 1.1 Hz. Twenty measurements were 
taken for each of the six orientations of the grating. 
Note that, across many modes (up to an index of 300 
or so), a sequence of harmonics has a fundamental 
frequency of around 0.03 Hz. Harmonics are also seen 
at multiples of a lower fundamental frequency of ap-
proximately 0.005 Hz in the range of mode indices 
from about 20 to 30 (see blow-up of the low frequency 
region). Since N = 6 and T = 34 s, the fundamen-
tal frequency f0 = 1/204 ∼ 0.005 Hz. Thus, the peak 
at 0.005 Hz reflects the periodicity of the N stimulus 
stack. Since 0.03 = 6 × 0.005, the peaks at multiples 
of 0.03 Hz correspond to the nonspecific response.

The amplitudes and the F-values of the sinusoidal 
components at nf

0
 for nN,2N,… etc., can be deter-

mined and the data reconstructed from the statisti-
cally significant sinusoids. Thus, if the F-test for the 
singular vector u

i
(t) is significant at frequencies f

ij
, 

the reconstructed data are given as follows:

, (11)

where aj
 are the amplitudes and φj

 are the phases of 
the significant sinusoids. Figure 6 shows the results 
of this analysis on the example data set. To better 
visualize the response, the figure shows the two lead-
ing spatial modes and reconstructed temporal modes 
retaining the specific response. These modes contain 
90% of the variance in the signal. Note the dappled 
pattern in the spatial modes that result from orienta-
tion columns in cat visual cortex.

Figure 3. Global coherence spectra computed from the space-
frequency SVD of the fMRI data set from the previous figure. 
The solid line indicates the spectrum for the data recorded in 
the presence of visual stimulus, the dashed line in the absence 
of visual stimulus. Reprinted from Mitra and Pesaran, 1999, 
their Figure 10, with permission of the Biophysical Society.

Figure 4. Amplitudes of the leading spatial eigenmodes at 
center frequencies from 0 to 0.3 Hz in 0.1-Hz increments,  
obtained from a space-frequency SVD. The components in the 
top row were obtained from data recorded in the absence of 
visual stimulus, and those in the bottom row in the presence 
of visual stimulus. Adapted from Mitra and Pesaran, 1999, 
their Fig. 26, with permission of the Biophysical Society.

Figure 5. The log-spectrum of leading temporal modes, calcu-
lated for the optical imaging data set discussed in the text. The 
eigenvector index of the mode is displayed on the x-axis and 
the frequency in hertz on the y-axis. Lighter shades indicate 
more spectral power and darker shades less spectral power. 
Also shown is an enlargement of the low-frequency region. 
Reproduced with permission from Mitra and Bokil, 2008.
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Conclusion
We have shown that the SVD provides a powerful 
method for reducing dimensionality and denoising 
multivariate data sets, including fMRI and optical 
imaging data. We have also shown how the SVD in 
combination with the Thomson F-test may be used 
to extract stimulus-related responses in optical imag-
ing experiments with repeated stimuli.

While the SVD is a powerful method, a caution is 
nonetheless in order regarding its use. In particu-
lar, it should be emphasized that individual eigen-
modes computed from the SVD (as well as modes 
obtained using ICA or other matrix decomposition 
algorithms) do not necessarily have biological mean-
ing. When modes can be identified with particular 
physiological sources, this sort of procedure is useful, 
especially in exploratory data analysis. Nevertheless, 
these are mathematical algorithms, and there is no 
necessity that such segregation will occur. The SVD, 
for example, imposes the constraint that the indi-
vidual modes must be orthogonal. However, there is 
no reason to assume that neurobiologically relevant 
modes are orthogonal to one another. Similarly, it 
is entirely possible that the “noise tail” of the SVD 
actually contains physiologically interesting signals 
that are masked because they have small amplitudes. 
For these reasons, matrix decomposition algorithms 
have limited utility as methods for separating differ-

ent noise and signal sources. In general, rather than 
consider individual components, it is better to con-
sider entire subspaces consisting of groups of modes, 
which have a better chance of segregating noise or 
signal sources of interest.
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Figure 6. Two leading modes in the SVD of the optical  
imaging data set reconstructed from the statistically significant  
periodic responses. These modes contain 90% of the  
variance of the extracted signal. The left panels show the  
spatial modes. These two modes represent basis functions 
that make up the orientation response in cat primary visual 
cortex. The right panels show the corresponding time courses 
(black) with one-sigma global confidence bands (gray) for 
one stack of stimuli. The vertical lines (34 s apart) indicate the 
separation between responses to different orientation stimuli 
within a stack. Adapted with permission from Sornborger et  
al., 2003b.
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Background
Experimental neuroscience involves the use of many 
different tools from physics, genetics, and other fields. 
Proper data analysis is an integral part of this set of tools. 
Used correctly, analysis will help to define the magni-
tude and significance of a given neural effect; used cre-
atively, analysis can help reveal new phenomena.

In this chapter, we consider five example cases  
that introduce the utility and implementation of 
spectral methods:

 (1)  Deduction of variation in the power of a 
high-frequency cortical oscillation from a hu-
man electrocorticogram (ECoG). This will 
illustrate frequency-domain concepts such as  
the spectrogram.

 (2)  Deduction of synaptic connectivity between 
neurons in the leech swim network. This will 
emphasize notions of spectral coherence and 
its associated confidence level.

 (3)  The discovery of neurons in rat vibrissa motor 
cortex that report the pitch of vibrissa move-
ment. This will illustrate the notion of the 
spectral power density as the sum of -functions 
corresponding to pure tones and a slowly vary-
ing, or pink, spectrum.

 (4)  The denoising of imaging data in the study of 
calcium waves. This will introduce the concept 
of singular value decomposition (SVD) in the 
time domain and illustrate the notion of space-
time correlation in multisite measurements.

 (5)  The delineation of wave phenomena in turtle 
cortex. This will illustrate the concept of SVD 
in the frequency domain and further illustrate 
the notion of space-time coherence.

Throughout this discussion the emphasis will be 
on explaining the analysis and not on the scientific 
questions per se.

Advantages of Working in the 
Frequency Domain
Why work in the frequency domain? One part of the 
answer is to delineate the number of degrees of free-
dom required to calculate confidence intervals. The 
following factors are relevant:

	 •		Determining	the	number	of	degrees	of	 freedom	
is complicated in the time domain, where all 
but white noise processes lead to correlation  
between neighboring data points.

	 •		In	 contrast,	 counting	 the	 number	 of	 degrees	
of freedom is straightforward when neighbor-

ing data points are uncorrelated. This occurs in 
the frequency domain when the amplitude of 
spectral power in the data varies only slowly on 
the scale of the bandwidth, so that neighboring 
points in frequency are uncorrelated.

A second part of the answer is that some phenom-
ena have a simpler representation in the frequency  
domain rather than the time domain.

This chapter builds on the discussion of the time-
bandwidth product and multitaper analysis (Thom-
son, 1982) in Spectral Analysis for Neural Signals, 
presented earlier in this Short Course by Bijan Pesa-
ran. First, we recall the time-frequency uncertainty:

Tf = 2p
where T is the total length of the time series of the 
data; 2p is the number of degrees of freedom and de-
fines the time-frequency product, with p ≥ 1; and Δf 
is the resultant full bandwidth. The power is con-
centrated in the frequency interval Δf, optimally so 
for the use of family of Slepian tapers employed to 
estimate spectra (Thomson, 1982). The maximum 
number of tapers, denoted K, that supports this con-
centration, and which is employed throughout our 
presentation, is as follows:

K = 2p  1.

Rosetta Stone
The variables used in the Pesaran chapter herein 
and past reviews (Mitra and Pesaran, 1998; Mitra et 
al., 1999) expressed in discrete, normalized variables 
by writing (1) T = NΔt, where N is the number of 
data points in the time series and Δt = 1 /  (2f

Nyquist
) 

is the sample time; and (2) 2W = Δt Δf, where W is 
the half-bandwidth. Thus, NW = p. In normalized 
variables, time spans the interval [1, N] rather than 
[Δt, T]; frequency spans the interval [–½, ½] rather 
than [–f

Nyquist
, f

Nyquist
]; and the integral

 

 is replaced by with
 

Δt = 1. Tools for the numerical calculations used in 
the examples below are part of the Matlab-based 
Chronux package (www.chronux.org). The primary 
textbooks include those by Percival and Walden, 
1993, and Mitra and Bokil, 2008.

Case one
We analyze a trace of human ECoG data, defined as 
V(t), that was obtained in a study on ultra-slow brain 
activity (Nir et al., 2008) (Fig. 1A). The mean value 
is removed to form the following:

.
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Our goal is to understand the spectral content of this 
signal—with confidence limits! The Fourier trans-
form of this signal, with respect to the kth taper, is 
as follows:

where w(k)(t) is the kth Slepian taper, whose length is 
also T. We then compute the spectral power density, 
whose units are amplitude2/Hz, in terms of an aver-
age over tapers:

 

where ; we 

further average the results over all trials, if appro-
priate. The above normalization satisfies Parseval’s 
theorem, i.e.,

 

The spectrum in this example is featureless, having a 
hint of extra power between 50 Hz and 100 Hz  
(Fig. 1B). One possibility is that the spectrum is bet-
ter defined on a short time scale, but drifts  
(Fig. 1B, insert). In this case, it is useful to compute 
the running spectrum, or spectrogram, denoted 
S(f; t), which is a function of both frequency and 
time. Here we choose a narrow interval of time, com-
pute the spectrum over that interval, and then step 
forward in time and recalculate the spectrum. For the 
example data, this process reveals an underlying 
modulation in the power between 40 Hz and 90 Hz 
(Fig. 1C): the so-called γ-band.

How do we characterize the γ-band’s variations in 
power? We treat the logarithm of the power in a band 
as a new signal found by integrating the spectrogram 
over the frequency:

This gives us a new time series (Fig. 1D). We take 
the logarithm because the spectrum is χ2– as opposed 
to Gaussian-distributed; this transform stabilizes the 
estimate of the variance. The spectral components of 

the new time series are called the “second spectrum,” 
denoted Sγ(f) for this example:

The above formula shows a number of spectral fea-
tures (Fig. 1E) and raises two general issues.

The first issue is the calculation of confidence inter-
vals. For variables with a Gaussian dependence on 
their individual spectral amplitudes, the confidence 
limits may be estimated in various asymptotic limits. 
However, the confidence intervals may also be esti-
mated directly by a jackknife (Thomson and Chave, 
1991), where we compute the standard error in terms 
of “delete-one” means. In this procedure, we calcu-
late K different mean spectra, in which one term is 
left out: 

 .
Estimating the standard error of Sγ(f) requires an 
extra step since spectral amplitudes are defined on 
the interval [0, ∞) while Gaussian variables exist on 
(–∞, ∞). The delete-one estimates, |C

i
(n)(f)|, were 

replaced with the following transformed values:

or

The mean of the transformed variable is as follows:

and standard error of the transformed variable is as 
follows:

.

The 95% confidence interval for the spectral power 

is thus  The confidence 
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bands are symmetric about the mean when spectral 
power is plotted on a logarithmic scale (Fig. 1E).

A second issue is a 1/f  2 trend in the spectrum, which 
obscures peaks. We remove this trend by computing 
the spectrum of dVγ(t)/dt in order to reveal peaks, 
particularly at f = 0.05 Hz (Fig. 1F). The conclu-
sion is that power in the γ-band shows slow periodic 
variation, which is of interest in light of the conjec-
ture that this variation may drive spectrally similar 
variations in the blood oxygenation level-dependent 
(BOLD) functional magnetic resonance (fMR) sig-
nal (Nir et al., 2008).

Case two
We now consider the use of optical imaging to de-
termine potential pairwise interactions between 
neurons (Cacciatore et al., 1999). We focus on im-
aging data taken from the ventral surface of a leech 
ganglion and seek to identify cells in the ganglion 
that receive monosynaptic input from neuron Tr2 in 
the head (Fig. 2A). This cell functions as a toggle for 
regulating the swim rhythm in these animals. Rather 

than serially impaling each of the roughly 400 cells 
in the ganglion and looking for postsynaptic currents 
induced by driving Tr2, a parallel strategy was adopt-
ed by Taylor and colleagues (2003). The cells in the 
ganglion were stained with a voltage-sensitive dye 
(Fig. 2B), which transforms changes in membrane 
potential into changes in the intensity of fluorescent 
light. The emitted light from all cells was then de-
tected with a CCD camera (Fig. 2B) from which time 
series for the change in fluorescence were calculated 
for each neuron in the field. Presynaptic cell Tr2 was 
stimulated with a periodic signal, at frequency f

Drive
, 

with the assumption that candidate postsynaptic 
followers of Tr2 would fire with the same periodic-
ity (Fig. 2C). The phase of the coherence relative to 
the drive depends on several factors: the sign of the 
synapse, propagation delays, and filtering by postsyn-
aptic processes.

The coherence between the response of each cell and 
the drive (a complex function denoted C

i
(f) ) was 

calculated over the time period of the stimulus. We 
denoted the time series of the optical signals as V

i
(t) 

Figure 1. Analysis of the spectral properties of human local field potential (LFP) data (Drew et al., 2008, their Fig. 1, reprinted with 
permission from Nature Neuroscience). A, The LFP was obtained during stage 2 sleep; fNyquist = 500 Hz. B, Spectrum (T = 300 
s; K = 29) of the LFP in panel A; insert shows spectra (T = 10 s; K = 9) for the intervals demarcated in panel D. C, Spectrogram 
(window T = 10 s, overlap = 1 s; K = 13) of the LFP with full bandwidth ΔF = 1.4 Hz; color scale maps the logarithm of power 
from black/red (low) to white/yellow (high). Note the systematic variation in power in the γ band. D, Time series of the logarithm 
of the power in the γ band of the LFP, integrated from f1 = 40 Hz to f2 = 90 Hz; fNyquist = 0.5 Hz. E, Second spectrum (T = 300 s; 
K = 13) using the time series in panel D with ΔF = 0.05 Hz; blue stripe is the 95% (2σ) confidence interval. F, Second spectrum 
using the derivative of the time series in panel D as a means of removing a 1/f2 trend.
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and the reference drive signal as U(t). The spectral 
coherence was defined as follows:

To calculate the standard errors for the coherence  
estimates, we again used the jackknife (Thomson 
and Chave, 1991) and computed delete-one averages 
of coherence, denoted C

n
(k)(f) , where n is the index 

of the deleted taper:

Estimating the standard error of the magnitude of 
C

i
(f) requires an extra step, similar to the case for 

the spectral power, since |C
i
(f)| is defined on the  

interval [0, 1] while Gaussian variables exist on 
(–∞, ∞). The delete-one estimates, |C

i
(n)(f)|, were 

replaced with the following transformed values:

or 

The mean of the transformed variable is as follows:

Figure 2. Analysis of voltage-sensitive dye imaging experiments to find followers of Tr2 (Taylor et al., 2003, their Fig. 1 and  
Fig. 3, reprinted with permission from the Journal of Neuroscience). A, Cartoon of the leech nerve cord; input to Tr2 forms the 
drive U(t). B, Fluorescence image of ganglion 10 stained with dye. C, Ellipses drawn to encompass individual cells and define 
regions whose pixel outputs were averaged to form the Vi(t). D, Simultaneous electrical recording of Tr2, i.e., U(t), and optical 
recordings from 6 of the cells shown in panel C, i.e., V1(t) through V6(t), along with |Ci(fDrive)| (T = 9 s; K = 11) E, Polar plot of 
Ci(fDrive) between each optical recording and the cell Tr2 electrical recording for all 43 cells in panel C. The dashed line indicates 
that α = 0.001 is the threshold for significance; error bars = one standard error. F, Results of electrophysiological tests of mono-
synaptic drive for cells 356, 252, and p54, along with confocal images of fills of these cells. Spike-triggered averages, each from 
a different condition, are shown with error bands. The spike in Tr2 that triggered each sweep is shown only for the first condi-
tion; scale bar indicates current injection. The second trace (Normal) is the recording from the postsynaptic target in physiological 
saline. The third trace (20/20) is the recording in 20 mM Ca

2+
 / 20 mM Mg

2+
 saline to block polysynaptic transmission. The fourth 

trace (0/20) is in 0 mM Ca
2+

 / 20 mM Mg
2+

 saline to block all transmission. The bottom trace (Wash) is again in normal saline.
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and standard error of the transformed variable is  
as follows:

The 95% confidence interval for the coherence is 

 For 

completeness, an alternate transformation for com-
puting the variance is g{|C

i
|} = tanh-1{|C

i
|}.

We now consider an estimate of the standard devia-
tion of the phase of C(f). Conceptually, the idea is 
to compute the variation in the relative directions of 
the delete-one unit vectors C

i
(f)/|C

i
(f)|. The stan-

dard error is computed as follows:

Our interest lies in the values of C
i
(f) for f = f

Drive
 

and the confidence limits for these values. We chose 
the bandwidth so that the estimate of |C

i
(f

Drive
)| is 

kept separate from that of the harmonic |C
i
(2f

Drive
)|; 

the choice Δf = 0.4 f
Drive

 works well. We thus graph 
the magnitude and phase of C

i
(f

Drive
) for all neurons, 

along with the confidence interval, on a polar plot 
(Fig. 2E).

Finally, we consider whether the coherence of a  
given cell at f

Drive
 is significantly greater than zero, 

that is, larger than one would expect to occur by 
chance from a signal with no coherence, as a means 
of selecting candidate postsynaptic targets of Tr2. We 
compared the estimate for each value of |C

i
(f

Drive
)| 

to the null distribution for the magnitude of the  
coherence, which exceeds

only in α of the trials (Hannan, 1970; Jarvis and  
Mitra, 2001). We used α = 0.001 in our experiments 
to avoid false-positives. We also calculated the mul-
tiple comparisons of α level for each trial, given by 
α

multi
 = 1 – (1 – α)N, where N is the number of cells 

in the functional image, and verified that it did not 
exceed α

multi
 = 0.05 on any trial.

The result of the above procedure was the discovery 
of three postsynaptic targets of cell Tr2, two of which 
were functionally unidentified neurons (Taylor et al., 
2003) (Fig. 2F).

Case three
Rats can palpate objects via highly regular rhythmic 
whisking (Berg and Kleinfeld, 2003). Motivated by 
ideas from control theory, we conjectured that pri-
mary motor (M1) cortex transforms sensory input 
to serve as a feedback signal for the smooth motion 
of the vibrissae. We posed the question of whether 
a punctate periodic input (such as occurs when the  
animal rhythmically palpates an object) is trans-
formed into a pure sinusoidal signal over the 5-20 Hz 
range of normal whisking frequencies.

To test this theory, we had awake rats hold their  
vibrissae still as periodic air puffs were delivered. 
Records from primary sensory cortex (S1) showed a 
known punctate response, while those from M1 were 
smooth (Figs. 3A,E). The stimulus-driven power 
spectrum for the S1 unit displayed multiple harmon-
ics (Fig. 3B) consistent with a pulsatile response, 
while that for the M1 unit appeared to have power 
only at the fundamental frequency of the stimulus 
repetition rate, denoted f

1
 (Fig. 3F). We consequently 

asked whether the motor response could be replaced 
with a pure sinusoidal process with a frequency of f

1
. 

Thus, the time series for the spike rate must take the 
following form:

 ,

where η(t) is the residual noise. We recall that cos(x) 
= ½(e i x + e –ix) and define

 

so that V(t) can be placed in a computationally con-
venient form, as follows:

As a means of estimating the complex amplitude B
1
, 

we first make multiple estimates of the spectra in the 
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vicinity of frequency f
1
 so that we can regress over a number of tapers to determine B

1.. The Fourier transform 
of V(t) with respect to the kth taper is as follows:

This compresses to

where we defined the spectrum of the kth taper as 

and the kth spectral estimate of the residual as

.

The estimate of the transform at the frequency of interest, f = f
1
, becomes

where we used  from the condition 2f
1
 > Δf, i.e., the spectrum of a taper has no amplitude 

outside of its bandwidth, and note that w(k)(t) is an odd function for even values of k.

The above relation specifies a regression for B
1
 over odd values of k, where the Ṽ(k)(f

1
) are the dependent 

variables and the  ̃(k)(f
1
) are the independent variables. The least-squares estimate of B

1
, denoted B̂

1
, is  

as follows:

and the associated F-statistic is derived to be the following (Thomson, 1982):

The formula below is the estimated contribution of the periodic signal to the continuous spectrum:
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We accept the estimator
 
B̂

1 
if the F-statistic exceeds 1 - 1/N

t
, where N

t
 is the number of points in V(t). If B̂

1 
is 

significant, we move to another frequency in order to determine the complete set of estimators, denoted
 
B̂

m
 

with m = 1, …, M, for all M sinusoidal components. The final spectrum is expressed below:

This is shown for the example M1 and S1 units (Figs. 3C,D,G,H); the same expansion coefficients are 
used to construct transfer functions for the response (Figs. 3A,E). Note the low-frequency peak in the re-
sidual spiking activity for both units that matches the respective spontaneous activity (Figs. 3D,H). Finally, a 

Figure 3. Simulated analysis of single unit data from S1 and M1 cortices as a single vibrissa of an awake but immobile rat  
(Kleinfeld et al., 2002, their Fig. 3 and Fig. 5, reprinted with permission from Neuron). A, E, Stimulus-triggered average and 
transfer function between the stimulus and the instantaneous spike rate of sensory and motor units (thin black line) for vibrissa 
stimulation at 5 Hz. The transfer function was computed from a spectral decomposition (T = 100 s; K = 99) of the time series 
of the response. B, F, Spectral power of the unit spike response; full bandwidth Δf = 1.0 Hz. C, G, The spectral power for the 
stimulus-driven part of the response. The height of each arrow corresponds to the magnitude of the complex coefficient for 
power at the fundamental frequency of the stimulus, denoted f

1
, or at the nth harmonic of the stimulus, fn. Only coefficients that 

surpassed the value set by an F-test were accepted and used to reconstruct the transfer functions in panels A and E, respectively. 
D, H, Power for the residual response, found by subtracting the stimulus driven components in the power (panels C and G) from 
the spectrum (panels B and F). For the S1 unit, note the excess power near 5 Hz (arrow in panel D) that is also present in the 
spontaneous activity. Note, too, the presence of low-frequency spiking in the residual activity for the M1 unit as well as in the 
spontaneous activity. I–L, Summary results from a unit to show the peristimulus time histogram (black curve) and the best fit (gray 
curve) at four different stimulation frequencies: 4, 7, 10, and 15 Hz; at all four frequencies, the modulated spike rate captures only 
the fundamental frequency of the stimulus. M, Summary of the relative power at f

1
 for all motor units in the study. A value of 1 

indicates that the unit follows only the fundamental frequency of the stimulus. The height of a bar corresponds to the number of 
separate units. Panels A, B, D, E, F, H, I, J, K, and L plot the mean and two standard error limits.
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measure of the purity of pitch determination is given 
by the ratio of the power at the fundamental to the  
total power:

Of interest, the above measure was found to be 
Ĉ(f

1
)=1 only when the vibrissa stimulation was  

between 5 Hz and 20 Hz (Fig. 3M)—the natural 
whisking frequencies. Linear filtering cannot explain 
such an effect, and it was conjectured that an active 
filtering process, such as the neurological realization 
of a phase-locked loop, underlies this process (Klein-
feld et al., 2002).

Case four
A common issue that arises in the analysis of optical 
imaging data is to remove “fast” noise—that is, fluc-
tuations in intensity that occur on a pixel-by-pixel 
and frame-by-frame basis. The idea is that the imag-
ing data contain features that are highly correlated in 
space, such as underlying cell bodies and processes, 
and highly correlated in time, such as long-lasting 
responses. The imaging data may thus be viewed as 
a space-time matrix of random numbers: i.e., the fast 
noise, with added correlated structure.

With this model in mind, we focus on the case of 
Ca2+ waves in an organotypic culture of rat cortex, 
which contains both neurons and glia. All cells were 
loaded with a calcium indicator, and spontaneous 
activity in the preparation was imaged using a fast-
framing (f

sample
 = 500 Hz), low-resolution (100 × 100 

pixels) confocal microscope (Fig. 4A).

Imaging data takes the form of a three-dimensional 
array of intensities, denoted V(x, y, t). We consider 
expressing the spatial location in terms of a pixel  
index so that each (x, y)  s and the data are now in 
the form of a space-time matrix V(s, t). This matrix 
may be decomposed into the outer product of functions 
of pixel index and functions of time. Specifically,

 
,

where the rank of V(s, t) is the smaller of the pixel or 
time dimensions. For example data (Fig. 4A), there 
are N

t
 = 1200 frames, or time points, and N

s
 = 10,000 

pixels, so that rank{V(s, t)} = N
t
. The above decom-

position is referred to as an SVD (Golub and Kahan, 
1965). The temporal functions satisfy this eigen- 
value equation:,

where the functions F
n
(s) and G

n
(t) are orthonormal, 

so that

and

The spatial function that accompanies each tempo-
ral function is found by inverting the defining equa-
tion, so that the following holds true:

When this decomposition is applied to the Ca2+ 
imaging data (Fig. 4A), we see that the eigenvalue 
spectrum has some very large values for the low-or-
der modes but then rapidly falls to a smoothly de-
creasing function of index (Fig. 5A). (Theoretical  

Figure 4. Denoising of spinning-disk confocal imaging data on 
Ca2+ waves in organotypic culture. A, Selected frames from a 
1200-frame sequence of 100 × 100 pixel data. B, The same data 
set after reconstruction with 25 of the 1200 modes. Denoising is 
particularly clear when the data are viewed as video clips.
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expressions for the baseline distribution may be 
found in Sengupta and Mitra, 1999.) The spatial and 
temporal modes show defined structure for the first 
15 modes; beyond these, the spatial modes appear  
increasingly grainy, and the temporal modes appear 
as fast noise (Figs. 5B,C).

The utility of this decomposition is that only the 
lower-order modes carry information. Thus, we can 

reconstruct the data matrix from only these modes 
and remove the “fast” noise, as follows:

Compared with smoothing techniques, the truncated 
reconstruction respects all correlated features in the 

data and, for example, does not remove sharp edges. 
Reconstruction of the Ca2+-wave data highlights the 
correlated activity by removing fast, grainy-looking 
variability (Fig. 4B).

Case five
The final example concerns the characterization of 
coherent spatiotemporal dynamics. We return to the 
use of voltage-sensitive dyes, this time to image the 
electrical dynamics of turtle visual cortex in response 
to a looming stimulus. Early work had shown that a 
looming stimulus led to the onset of ~20 Hz oscilla-
tions, the γ-band for turtle, in visual cortex. The lim-
ited range of cortical connections suggested this oscil-
lation might be part of wave motion. Yet the raw data, 
even after denoising and broadband filtering, appears 
complex (Fig. 5A): Regions of net depolarization 
sweep across cortex, but no simple pattern emerges.

One possible explanation is that cortex supports 
multiple dynamic processes, each with a unique cen-
ter frequency, that may be decomposed by an SVD 
in the frequency domain. In this method (Mann 
and Park, 1994), the space-time data V(s, t) are first 
projected into a local temporal frequency domain by 
transforming them with respect to a set of tapers:

The index k defines a local frequency index in the 
band [f – Δf/2, f + Δf/2]. For a fixed frequency, f

0
, an 

SVD is performed on this complex matrix:

This yields the following:

Figure 5. SVD of the imaging sequence in Figure 4. A, The spec-
trum for the square of the eigenvalues for the space and time 
modes. Note the excess variance in the roughly 25 dominant 
modes. B, Top 15 spatial modes, Fn(s), plus high-order modes. 
C, Top temporal modes, Gn(t).
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where the rank is invariably set by K. A measure of 
coherence is given by the ratio of the power of the 
leading mode to the total power (Fig. 6B):

A completely coherent response leads to  
while for a uniform random process  
Where  has a peak, it is useful to examine the 
largest spatial mode, F̃

1
(s). The magnitude of this 

complex image gives the spatial distribution of co-
herence at f

0
, while gradients in its phase indicate 

the local direction of propagation.

For the example data (Fig. 6A), this analysis revealed 
linear waves as the dominant mode of electrical  
activity; those at 3 Hz were present with or without 
stimulation while those at 8 through 23 Hz were 
seen only with stimulation and propagate orthogonal  
to the wave at 3 Hz (Figs. 6C, H). It is of biological 
interest that the waves at 3 Hz track the direction of 
thalamocortical input, while those at higher frequen-
cies track a slight bias in axonal orientation (Cosans 
and Ulinski, 1990) that was unappreciated in the 
original work (Prechtl et al., 1997).
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The Need for Smoothing
A function f(x) is plotted in the upper left panel 
of Figure 1. A small amount of noise was added to 
f(x) for 100 values of x, yielding the 100 data pairs  
(x, y) in the upper right panel. In this case, it is easy 
to recover f(x): not its precise formula, but a repre-
sentation that provides a highly accurate value of 
f(x) for every x in the given range (–2, 2). When, 
instead, a large amount of noise was added, the 100 
data pairs in the lower left panel were produced. In 
this case, it is impossible to recover f(x) accurately. 
The prototypical statistical problem of smoothing is 
illustrated by the data in the lower right panel, where 
a moderate amount of noise was added: There, the 
general shape of the curve f(x) is visible, yet there is 
sufficient variation so that alternative approaches to 
curve-fitting give noticeably different results. This is 
the situation I wish to address here.

This chapter discusses several smoothing methods 
but emphasizes Bayesian adaptive smoothing splines 
(BARS), originally proposed by DiMatteo, Genovese, 
and Kass (2001). A relatively low-noise application 
of BARS to electro-oculogram data is seen in Figure 
2. A somewhat higher-noise application is found in 
Figure 3, which presents the problem of comparing 
neural firing-rate functions across different condi-
tions. The value of smoothing for visual display is 
apparent in Figures 2 and 3, but a compelling statisti-
cal reason for smoothing is that it improves accuracy 
in estimation. Kass, Ventura, and Cai (2003) gave 
an illustrative example where smoothing the peri-
stimulus time histogram (PSTH) based on 16 trials 
of data was numerically equivalent to using the raw 
PSTH based on 224 trials. In some situations, BARS 
can provide additional boosts in accuracy.

Functions are fundamental conceptual representa-
tions, yet they are commonly observed with moderate 

noise. From a theoretical point of view, though deal-
ing with functions statistically is a somewhat differ-
ent matter than dealing with numbers, the principles 
are pretty much the same. An important issue is that 
the amount of smoothness may vary across the range 
of the data. The function in Figure 1 varies much 
more rapidly within the region (–.25, 0.25) than out-
side it. In this sense, the function is “less smooth” 
within the region (–.25, 0.25) than outside it. Meth-
ods that have a fixed degree of smoothness cannot 
recover f(x) from the data in the bottom right panel. 
The “adaptive” part of BARS is its ability to vary 
the amount of smoothness appropriately, throughout 
the range of the data. This is a good thing when one 
believes strongly that a function will vary relatively 
slowly over portions of its domain. The ideas be-
hind BARS are very simple, but the computational 
technology based on Markov chain Monte Carlo 
(MCMC) is very powerful. Once this is understood, 
it is not surprising that BARS often does a good job. 
On the other hand, BARS has important limitations, 
which I will indicate.

Smoothing is, in some contexts, called filtering. The 
term denoising is also used, but this (and to a lesser 
extent, filtering) usually has to do with the very low-
noise case. Within the field of statistics, smoothing 
is also called nonparametric regression, which is non-
parametric in the sense that the formula for f(x) is 
left unspecified.

Nonparametric Regression Models
The statistical problem of nonparametric regression 
is to estimate a function y = f(x) from data pairs  
(x

j
, y

j
), for j = 1, . . . , n, with the response values y

j
  

assumed to be observations from the “signal plus 
noise” model here:

   (1)

Figure 1. Data simulated from function f(x) = sin(x) +  
2 exp(–30x2). Top left: the function; top right: low noise;  
bottom left: high noise; bottom right: moderate noise.

Figure 2. Electro-oculogram and BARS fit to it. Modified with 
permission from Wallstrom et al. (2002).

Y
j
 = f(x

j
) + ε

j .
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It is usually solved by some variation on least squares, 
which may be motivated by an assumption that the ε

j
 

variables are independent and Normally distributed. 
Generalized nonparametric regression replaces the 
Normal distribution with some other distribution, 
and modifies the model accordingly. Of particular 
interest is the Poisson case:

  (2)

(Kass, Ventura, and Cai, 2003; Kass, Ventura, and 
Brown, 2005). Let us suppose that the unknown 
function involves a parameter vector θ. In place of 
least squares, we may then use the method of maxi-
mum likelihood, or some variant of it, based on the 
following likelihood function:

with θ appearing on the right-hand side implicitly 
through the relation log λ

j
 = f(x

j
). In applications, we 

often take the explanatory variable x to be time t.

Mean Squared Error
A method of (generalized) nonparametric regression 
produces at each x an estimate f̂(x). A good method 
is one that is likely to make the difference between  

f̂(x) and f(x) small for every relevant value of x. The 
simplest and most widely used way to measure likely 
difference is mean squared error (MSE):

Here E stands for expectation, meaning the theoreti-
cal average (mean) over hypothetical repetitions of 
the data-collection process. The values of MSE(x) 
are then integrated across all relevant values of x to 
produce the integrated mean squared error (IMSE or 
MISE). Typically, MSE decreases roughly in propor-
tion to sample size, at least for large samples. Thus, 
if some method A has half the MSE of method B, 
method A with sample size n is likely to be about as 
accurate as method B would be with sample size 2n. In 
(2), for large samples, the method of maximum likeli-
hood achieves the minimum possible MSE. Bayesian 
methods also achieve the minimum possible MSE.

To evaluate the MSE, some additional assumptions 
must be made. In some simple situations, it is possible 
to get analytical expressions for the MSE. Otherwise, 
two alternative numerical methods are used: simula-
tions based on (1) or (2) using a known function; or 
cross-validation. The latter produces a good estimate 
of MSE under (1) for large samples, i.e., large n. An 
extremely important general relation is as follows:

Many estimators f̂(x) may be modified to produce 
small bias when allowed to increase variance, or small 
variance when allowed to increase bias. This is called 
the “bias-variance trade-off.” In selecting a smooth-
ing method, a small integrated MSE is desirable, but 
of course computational convenience (availability of 
software and ease of use in particular situations) is 
also important.

Popular Smoothing Methods
There are two general approaches to nonparametric 
regression. The first estimates f(x) by weighting the 
data (x

i
, y

i
) according to the proximity of x

i
 to x in a 

process called local fitting. The methods following the 
second approach attempt to represent a function f(x) 
in terms of a set of more primitive functions, such as 
polynomials, which are usually called basis functions. 
Many techniques involve linear smoothers, meaning 
that the fitted function values  f̂(x

i
) are obtained by 

linear operations on the data vector y = (y
1
, . . . , y

n
)T.

Linear smoothers are fast and easy to analyze theoret-
ically. BARS is a nonlinear smoother that uses spline 
basis functions. Before discussing BARS, I will first 
very briefly discuss some linear smoothers.

Figure 3. Firing-rate functions from two M1 neurons, under 
two conditions. In all four plots, BARS has been fitted to a 
PSTH. Top: Neuron 1 under condition 1 (left) and condition 
(2). Bottom: Neuron 2 under condition 1 (left) and condition 
(2). Neuron 2 reacts quite differently under the two condi-
tions, but neuron 1 does not. Units are spikes per second. 
Modified with permission from Behseta and Kass (2005).

log λ
j
 = f(x

j
) 

Y
j
 ~ P(y

j | λ
j
)

MSE(x) = E (( f̂(x) – f(x))2).

MSE = BIAS2 + Variance.
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In ordinary linear regression, the regression line is the 
expectation of Y as a function ofx. Here we have:
and this is extended to some newly observed value of 

x by writing the following:

  (3)

In words, the average value of Y at x (averaged across 
hypothetical replications) is linear in x. To get E(Y | 
x), in principle, we take an infinite collection of rep-
lications at x and find their sample mean. In practice, 
with a finite sample of data, we could instead take a 
window of width δ and average all of the y

j
 values 

that correspond to x
j
 values in the interval (x – δ/2 , x 

+ δ/2). When we generalize (3) to

  (4)

we could, again in principle, also estimate f(x) by av-
eraging y

i
 values corresponding to x in (x – δ/2 , x + δ/2). 

For very large data sets (relative to the smoothness of 
f(x), with good estimation requiring more data when 
f(x) is more irregular), such local averaging will suc-
ceed. An immediate concern, however, is how to 
choose the size of the window used for averaging. 
Furthermore, in estimating f(x) even with moderate 
sized data sets, it is possible to improve on the arith-
metic mean among y

i
 values corresponding to x

i
 near 

x. The idea of local fitting is to consider x
i
 values that 

are somewhat more distant from x, but to weight the 
various x

i
 values according to their proximity to x.

When a weighted average of y
j
 values is used, with 

the weights defined by a suitable function w
j
 = K((x – 

x
j
) / h), the result is called kernel regression, with K(u) 

being the kernel. The constant h is usually called the 
bandwidth (by analogy with similar methods in spec-
tral analysis). The most commonly used kernel is the 
N(0, 1) pdf, in which case h effectively plays the role 
of a standard deviation. That is, we have w

i
 ∝ K

h
(x 

– x
i
), where K

h
(u) is the N(0, h2) pdf (and the pro-

portionality constant is h). More generally, any pdf 
could be used as a kernel. The choice of bandwidth 
h in kernel regression is important: When h is small, 
the estimate tends to follow the data closely but is 
very rough, whereas when h is large, the estimate be-
comes smooth but may ignore places where the func-
tion seems to vary. Bandwidth selection involves a 
“bias versus variance” trade-off: Small h reduces bias 
(and increases variance) while large h reduces vari-
ance (but increases bias). Theoretical arguments can 
provide heuristics for selecting the bandwidth.

A second idea in local fitting is to solve a weighted 
least-squares problem defined at x by suitable weights 
w

i
 = w

i
 (x). In particular, local linear regression at  

x minimizes

(5)

where the weights w
i
 are defined in terms of a ker-

nel. A Normal pdf may be used as the kernel, but 
an alternative is K(u) = (1 – |u|3)3 for |u| < 1 and 
K(u) = 0 otherwise. The latter form of the kernel is 
used as the default in some available software. Exten-
sive study of this methodology has shown that local 
linear regression is effective in many situations. As 
with kernel regression, in local polynomial regres-
sion there remains a choice of bandwidth. (Further 
information about bandwidth selection, and local fit-
ting in general, can be found in Loader, 1999, and 
at http://locfit.herine.net.) An important feature of  
local polynomial regression is that it may be ex-
tended to non-Normal families such as Binomial and 
Poisson. Instead of minimizing the locally weighted 
sum of squares in (5), a locally weighted likelihood 
function may be maximized.

Turning to basis functions, a particularly simple idea 
is to try to approximate f(x) by a polynomial. This 
turns out to perform rather badly, however, for many 
common functions. A possible solution is to glue 
together several pieces of polynomials. If the pieces 
are joined in such a way that the resulting function  
remains smooth, then it is called a spline. In par-
ticular, a cubic spline on an interval [a,b] is a func-
tion f(x) made up of cubic polynomials joined at a 
set of knots, ζ

1
, ζ

2
, … , ζ

p
, with a < ζ

1
 < ζ

2
 < … 

< ζ
p
 < b, such that f(x), f ‘(x), and f ‘’(x) are con-

tinuous (at the knots, and therefore throughout the  
interval [a,b]).

It is easy to define a cubic spline having knots at ζ
1
, 

ζ
2
, . . . , ζ

p
. Let (x – ζ

j
)+ be equal to x – ζ

j
 for x ≥ ζ

j
 

and 0 otherwise. Then the function 

  (6)

is twice continuously differentiable, and is a cubic 
polynomial on each segment [ζ

j
, ζ

j+1
]. Furthermore, 

the nonparametric regression model (1) becomes 
an ordinary linear regression model so that stan-
dard least-squares software may be used to obtain 
spline-based curve fitting. For example, suppose we 
have 7 data values y

1
, … , y

7
 observed at 7 x values,  

(x
1
, … , x

7
) = (–3, –2 –1, 0, 1, 2, 3) and we want to 

fit a spline with knots at ζ
1
 = –1 and ζ

2
 = 1. Then we  

E(Yi) = β
0
 + β

1
x

i
 ,

E(Y | x) = β
0
 + β

1
x . 

E(Y | x) = f(x) ,

f(x) = β
0
 + β

1
x + β

2
x2 + β

3
x3

+ β
4
(x–ζ

1
)3

+ + β
5
(x–ζ

2
)3

+ + … + β
p+3

(x–ζ
p
)3

+
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define y = (y
1
, … , y

7
)T , x

1
 = x = (–3, –2, –1, 0, 1, 2, 3)T,  

x
2
 = x2 = (9, 4, 1, 0, 1, 4, 9)T , x

3
 = x3 = (–27, –8, –1, 

0, 1, 8, 27)T , x
4
 = (x – ζ

1
)+ = (0, 0, 0, 1, 8, 27, 64)T, 

x
5
 = (x–ζ

2
)+ = (0, 0, 0, 0, 0, 1, 8)T, and we regress y 

on x
1
, x

2
, x

3
, x

4
, x

5
.

An important caveat in applying (6), however, is 
that the variables x

1
, x

2
, . . . x

p+3 will be highly cor-
related. There are two solutions to this problem. The 
first is to orthogonalize the x variables by sequentially 
replacing each variable with residuals from regression 
on previous variables. The second is to use a different 
version of splines, known as B-splines. These have 
similar properties but do not produce high correla-
tion among the regression variables. A variant of B-
splines, known as natural splines, assumes the second 
derivatives of the curve are zero at the boundaries a 
and b. Natural splines are often recommended.

When splines are used in regression models, they are 
frequently called regression splines. Regression splines 
are easy to use in (1), and also in (2) and other gen-
eralized regression models, because the problem 
of spline fitting becomes one of linear regression or 
generalized linear regression. This, however, assumes 
that the knot set ζ

1
, ζ

2
, . . . , ζ

p
 has been determined. 

The choice of knots can be consequential: with more 
knots, the spline has greater flexibility but also pro-
vides less smoothness; in addition, the placement 
of knots can be important. Figure 4 displays three 
alternative spline fits: splines with 5 and 15 knots, 
with locations equally spaced according to the quan-
tiles of x (so, for example, 5 knots would be placed 
at the 1/6, 1/3, 1/2, 2/3, 5/6 quantiles), and a spline with 
7 knots chosen by eye. The spline with 7 knots fits 
well because 5 knots are placed in the middle of the 
range, where the function variation is large, while 
only 2 are placed on the flanks where the variation  
is small.

One way to avoid the problem of knot selection 
is to use a large number of knots but to reduce, or 
“shrink,” the values of the coefficients. One intuition 
here is that using a large number of knots in a regres-
sion spline would allow it to follow the function well, 
but would make it very wiggly; reducing the size of 
the coefficients will tend to smooth out the wiggles. 
A second intuition is obtained by replacing the least-
squares problem of minimizing the sum of squares 
with the penalized least-squares problem of minimiz-
ing the penalized sum of squares:

where λ is a constant. Here, the squared second deriv-
ative is a roughness penalty: Wherever (f ‘’(x))2 is large, 
the function is fluctuating substantially, and the inte-
gral of this quantity is a measure of the total fluctua-
tion, or roughness. Thus, the value of the coefficient 
vector β* that minimizes PSS will achieve some com-
promise between fitting the y

i
 values and keeping the 

function smooth. It turns out that the solution to the 
penalized least squares problem is a cubic spline with 
knots at every value of x

i
, but with coefficients that 

are smaller in magnitude than those of the regression 
spline with knots at every x

i
 (which would correspond 

to taking λ = 0). This solution is called a smooth-
ing spline. Smoothing spline technology has a strong 
theoretical foundation and is among the most widely 
used methods for nonparametric regression. There 
is also much well-developed software for smoothing 
splines. An alternative to smoothing splines is penal-
ized regression splines or P-splines in which a modest 
number of knots is used. There is also substantial lit-
erature and software based on this approach.

One defect of smoothing spline technology, and of 
many other nonparametric methods, is that it as-
sumes the degree of smoothness of f(x) remains about 
the same across its domain, i.e., throughout the range 

Figure 4. Three cubic spline fits to data generated from the 
same test function as in Figure 1. Splines with 5 and 15 knots 
are shown (red dashed and blue dashed lines), with knot loca-
tions selected by default in R. The spline with 5 knots provides 
more smoothing than the spline with 15 knots and, as a re-
sult, does a poorer job of capturing the peak in the function. 
The spline shown in the solid line has 7 knots chosen to be ζ 
= (–1.8, –0.4, –0.2, 0, 0.2, 0.4, 1.8).
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of x values. An alternative is to devise a method that 
selects good knot sets based on the data.

Bayesian Adaptive Regression
Splines
The essential idea behind BARS is to assume in (1) 
that f(x) is a cubic spline with knot set ζ = (ζ

1
, … , ζ

p
), 

and to determine ζ by applying Bayes’ Theorem via 
MCMC. There are many theoretical arguments sup-
porting the Bayesian approach to problems of statistical 
inference (http://www.bayesian.org). From a practical 
point of view, Bayesian inference is based on a poste-
rior probability distribution on ζ, and the uncertainty 
thereby represented is easily propagated to quantities 
of interest, such as the time at which maximal firing 
rate occurs; this, in turn, leads to estimates, standard 
errors, and confidence intervals. With MCMC as a 
computational engine, Bayesian inference has been 
enormously useful in a wide variety of applications.

The particular version of MCMC used in BARS is 
called reversible-jump MCMC, which is well suited 
to problems where dimensionality of the parameter 
space is uncertain (here, the number of spline basis 
vectors is determined by the number of knots, which 
is unknown). DiMatteo and colleagues have shown in 
several examples that BARS could perform dramati-
cally better than related methods, which themselves 
performed better in many examples than competi-
tors such as wavelet-based methods. BARS has been 
used in applications in neurophysiology, imaging, 
genetics, and EEG analysis. Furthermore, simulation 
results have indicated that, with reasonable sample  
sizes, posterior confidence intervals produced by 
BARS can have very nearly the correct frequentist 
coverage probabilities. In addition, as a simulation-
based procedure, BARS can be less sensitive than are 
deterministic methods to very small perturbations 
of the data, such as those produced by moving data 
across computing platforms. We have checked our 
results using BARS across multiple computing plat-
forms and have obtained highly reproducible results.

The idea of MCMC is that it generates a sequence 
of knot sets ζ(g ) according to a probabilistic scheme 
(a Markov chain). For a given ζ(g ), a “proposal” ζ* is 
generated (from a proposal probability distribution). 
If the posterior probability density at ζ* increases rela-
tive to its value at ζ(g ), then ζ* becomes ζ(g+1). Other-
wise, ζ(g+1) is set either to ζ* or ζ(g ) with a certain prob-
ability. After the algorithm has been run for a while 
(after its “burn-in,” so that it has “converged”), the 
sequence of knot sets ζ(g ) may be considered random 
draws from the posterior distribution on ζ, represent-
ing the uncertainty in ζ due to the noise in the data.

For each draw ζ(g ) from the posterior distribution of ζ, 
a draw of the spline coefficient vector βζ

(g ) is obtained 
from the conditional posterior of βζ, conditionally on 
ζ(g ). From βζ

(g ) we obtain fitted values f (g )(t) for select-
ed t and these, in turn, may be used to produce a draw 
φ(g ) from the posterior distribution of any characteris-
tic φ = φ(f) (such as the value at which the maximum 
of f(t) occurs). Thus, the key output of BARS is the 
set of vectors f (g ) = (f (g )(t

1
), f (g ) (t

2
), … , f (g ) (t

k
)) for 

MCMC iterates g = 1, … , G, each f (g ) being a vec-
tor of fits along a suitable grid t

1
, t

2
, … , t

k
 that cov-

ers the interval [a,b]. The user may sample from the 
posterior distribution of any functional φ simply by 
evaluating φ(g ) = φ(f (g )). For instance, a sample from 
the posterior distribution of the location of the maxi-
mum of f(t) is obtained by finding the location of the 
maximum of f (g ) for each g. This latter computation 
is performed in a postprocessing environment such as 
R or Matlab. We have implemented two versions of 
BARS, one using a Normal noise distribution in (1) 
and the other using the Poisson model (2).

A key theoretical feature of the default BARS imple-
mentation is that it effectively chooses among alter-
native knot sets ζ by applying the Bayes information 
criterion (BIC). BIC is known to be conservative 
(it tends to oversmooth) but consistent; that is, it 
chooses the correct model for large samples. A key 
practical feature is that BARS uses continuous distri-
butions for knot placement together with a locality 
heuristic that attempts to place knots near existing 
knots. In addition to making the algorithm relatively 
efficient, one consequence is that knots can be placed 
essentially on top of each other, allowing BARS to fit 
discontinuous functions.

Comments
Two caveats should be given here. First, when ana-
lyzing spike train data, BARS is intended for use in 
smoothing the PSTH after pooling across trials. In or-
der to use BARS for within-trial analyses, it must be 
modified. Second, BARS is relatively slow. For long 
sequences of data, it may prove too time-consuming 
to be effective. In such cases, I recommend the other 
methods discussed here, especially local linear fitting 
or penalized splines, though the easiest method—ker-
nel regression (often known as Gaussian filtering)—
is often just as effective.

Our experience to date with BARS has been very 
favorable. It offers advantages in situations like the 
moderate noise case described in Figure 1, where the 
degree of smoothness varies across the domain of the 
function. Software and additional references may be 
found at http://www.stat.cmu.edu/~kass/bars.
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Introduction
Spike trains are fundamental to information process-
ing performed by the brain, and point processes form 
the foundation for modeling spike train data. Since 
the spikes from a single neuron have stereotyped 
waveforms, neural representations of biological and 
behavioral signals are based on the frequency and 
timing of spike events. Analyzing data of this sort 
presents its own unique challenges and poses its own 
set of questions. How can biological and behavioral 
signals be represented by spike sequences? What types 
of stochastic models are appropriate for explaining 
structure within these data? How can we measure 
how well a particular model is performing? In order 
to address these questions, we require a mathemati-
cal structure that can handle data of this nature.

A temporal point process is a stochastic, or random, 
time-series of binary events that occurs in continuous 
time (Daley and Vere-Jones, 2003). They are used to 
describe data that are localized at a finite set of time 
points. As opposed to continuous-valued processes, 
which can take on any of countless values at each 
point in time, a point process can take on only one 
of two possible values, indicating whether or not an 
event occurs at that time. In a sense, this makes the 
probability models used to describe point process data 
relatively easy to express mathematically. However, 
point process data are often inappropriately analyzed, 
because most standard signal-processing techniques 
are designed primarily for continuous-valued data. A 
fundamental understanding of the probability theory 
of point processes is vital for the proper analysis of 
neural spiking data (Brown et al., 2003; Brown et al., 
2004; Kass et al., 2005).

A Point Process May Be Specified 
in Terms of Spike Times, Interspike 
Intervals, or Spike Counts
Let S

1
,S

2
,… be random variables describing the  

occurrence times or spike times of a point  
process. A realization of a point process is the event  
S

1 
= s

1
,S

2 
= s

2
,… for some collection of times 0  s

1 
 

s
2 
 …. Let X

1
, X

2
,… be a set of random variables 

describing the possible waiting times between occur-
rences, or interspike intervals. We can compute the 
waiting times from the spike times by taking the  
difference between subsequent spike times. Mathe-
matically, X

1 
= S

1
 and X

i 
= S

i 
 S

i1
. Similarly, we can 

compute the spike times by taking the cumulative sum 

of all the waiting times. That is, .  

Clearly, there is a one-to-one correspondence  
between any set of spike times and any set of inter-
spike intervals. 

Another useful way to describe a set of spiking obser-
vations is in terms of the number of spikes observed 
over any time interval. We define N(t), the counting 
process, as the total number of spikes that have oc-
curred up to and including time t (Fig. 1). The count-
ing process gives the number of spikes observed in the 
interval (0,t]. If we let N

(t1,t2)
 denote the total num-

ber of spikes observed in an arbitrary interval (t
1
,t

2
], 

then we can compute this from the counting process, 
N

(t1,t2) 
= N(t

2
)  N(t

1
). N

(t1,t2) 
 is sometimes called 

the increment of the point process between t
1 
 and t

2 
.  

We see that keeping track of the times at which the 
counting process increases is equivalent to keeping 
track of the spike events. Therefore, characterizing 
the spike events is equivalent to characterizing the 
counting process, and vice versa. 

The spike time, interspike interval, and counting 
processes are all continuous time specifications of a 
point process. It is often useful, both for developing 
intuition and for constructing data analysis methods, 
to consider point processes in discrete time. One 
approach for constructing a discrete-time represen-
tation of a point process is to take the observation 
interval (0,T] and break it up into n small, evenly 
spaced bins. Let t = T/n, and t

k 
= k•Δt, for k = 1,…, n.  

We can now express a spike train in terms of discrete 
increments N

k 
= N(t

k
)  N(t

k1
), which count the 

number of spikes in a single bin. If t  is small enough 
so that the process cannot fire more than one spike in 
a single bin, then the set of increments {N

k
}
k=1,…,n

 is 
just a sequence of zeros and ones indicating in which 
bins spikes are observed (Fig. 1).

Figure 1. Multiple specifications for point process data.
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Spike Data Often Display History-
Dependent Behaviors
One of the simplest, most commonly used classes of 
neural spiking models is the Poisson process. Pois-
son processes are characterized by lack of memory, 
meaning that the probability distribution of spiking 
at any point in time is independent of all previous 
spiking activity. This is appealing from a mathemati-
cal point of view because it simplifies the calculation 
of the likelihood and other distributions used in data 
analysis. In some cases, especially when spikes are 
rare compared with the time scale of the intrinsic 
membrane dynamics, or the effect of history has been  
averaged out by combining multiple spike trains, 
Poisson processes can accurately describe spiking 
activity. For example, when the spontaneous spiking 
activity from multiple neurons is recorded on a single 
electrode and left unsorted, the past firing of one 
neuron may have no effect on the firing probabilities 
of the other neurons, so that the combined spiking 
activity shows little to no history dependence.

However, Poisson processes rarely furnish realistic 
models for spike train data. In particular, the biophys-
ical properties of ion channels limit how fast a neuron 
can recover immediately following an action poten-
tial, leading to a refractory period during which the 
probability of firing another spike is zero immediately 
after and then significantly decreased further after the 
previous spike. This is perhaps the most basic illus-
tration of history dependence in neural spike trains. 
Bursting is a more complicated, history-dependent 
neural behavior characterized by short sequences of 
spikes with small interspike intervals (ISIs). In addi-
tion, spiking activity can display oscillatory behavior. 
For example, neurons in the CA1 region of rodent 
hippocampus tend to fire at particular phases of the 
EEG theta rhythm (Buzsaki et al., 1983). To describe 
accurately the spiking structure in these neurons, the 
probability of a spike occurring at a given time must 
depend on recent past spiking activity.
 

The Conditional Intensity Function 
Specifies the Joint Probability 
Density of Spike Times for a 
General Point Process
Since most neural systems have a history-dependent 
structure that makes Poisson models inappropri-
ate, it is necessary to define probability models that  
account for history dependence. Any point process 
can be completely characterized by its conditional 
intensity function, (t|H

t
) (Daley and Vere-Jones, 

2003), defined as follows:
  (1)

where Pr(N
(t,t] 

= 1 | H
t
 is the instantaneous con-

ditional probability of a spike, and H
t
 is the history of 

the spiking activity up to time t. Since the probabil-
ity of a spike in any interval must be nonnegative, so 
too must be the conditional intensity function. This 
conditional intensity function expresses the instanta-
neous firing probability and implicitly defines a com-
plete probability model for the point process. It will 
therefore serve as the fundamental building block for 
constructing the likelihoods and probability distribu-
tions needed for point process data analysis.

By construction, the conditional intensity is a  
history-dependent rate function because it defines 
a probability per unit time. If Pr(N

(t,t] 
= 1|H

t 
 

is independent of history, then the point process  
reduces to a Poisson process; therefore, the condi-
tional intensity generalizes the concept of a rate 
function for a Poisson process. It is important to real-
ize that the conditional intensity can be a stochastic 
process itself, since it can depend on spiking history, 
which is stochastic. A conditional intensity function 
that depends on history or on any other stochastic 
process is often called a conditional intensity process, 
and the resulting point process is called a doubly sto-
chastic point process.
 
Additional important intuition behind the condi-
tional intensity function can be gained by choosing 
t to be a small time interval and re-expressing Equa-
tion 1 as follows:

 Pr(N
(t,t] 

= 1|H
t
)  (t|H

t
)t. (2)

Equation 2 states that the conditional intensity func-
tion multiplied by t gives the probability of a spike 
event in a small time interval t.
 
If we make t  sufficiently small so that no more than 
one spike can be fired in a single bin, then the prob-
ability of a spike occurring can be analyzed as a Ber-
noulli process in which, for any small interval, the 
probability of a spike is the following:

          Pr(spike in [t,tt)|H
t
) (t|H

t
)t, (3)

and the probability of no spike is as follows: 

     Pr(no spike in [t,tt)|H
t
) 1(t|H

t
)t. (4)

This is one sense in which the conditional intensity 
function characterizes a spike train. We can think 
of any neural point process as a local Bernoulli pro-
cess with a spiking probability determined by the  
conditional intensity function. This is one rea-
son that point processes are conceptually simple to  
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understand. At each instant, you either observe a 
spike or you don’t. The probability of observing a 
spike can be a function of past spiking activity, as 
well as other stochastic or time-varying signals, and 
is characterized by the conditional intensity.

By using this Bernoulli approximation for the incre-
ments and taking the limit as t  0, it is easy to show  
that in an observation interval (0,T], the joint probabil-
ity density of observing a spike train with spikes occur-
ring at the times s

1
,…,s

N(T)
 is the following:

fs1
, … , sN(T)

(s1, … , sN(T)) =∏ (λ(si|Hsi
)) exp{–∫  λ(t|Ht)dt}

N(T)
T

0
i = 1

,(5)

where N(T) is the total number of spikes observed 
in the interval (0,T], and S

N(T)
 is the time of the last 

observed spike (Snyder and Miller, 1991). 

One way to interpret Equation 5 is to look at the two 
terms in the product on the right side separately. The 

∏ (λ(si|Hsi
))

N(T)

i = 1  
term characterizes the distribution 

of firing at exactly the observed spike times, 

s
1
,…,s

N(T)
. The exp{–∫  λ(t|Ht)dt}T

0  term
 
gives 

the probability of not firing any other spikes in the 
observation interval (0,T]. Therefore, Equation 5 de-
scribes the distribution of firing only at the observed 
spike times, and nowhere else. This joint probability 
density fully characterizes a spike train, and will be 
the backbone for most of our statistical analyses. For a 
parametric model of the conditional intensity and an 
observed spike train, Equation 5 represents the data 
likelihood as a function of the model parameters.

A Point Process Model Expresses 
the Conditional Intensity As a 
Function of Time, History, and 
Other Variables
Equation 1 defines the conditional intensity func-
tion in terms of the instantaneous firing probability 
of the point process. However, this probability distri-
bution is typically unknown. Therefore, rather than 
constructing the conditional intensity based on the 
firing probability, we typically write down a model for 
the conditional intensity, which implicitly defines 
the probability model for any spiking data. Thus, 
a conditional intensity model provides a way to  
express the probability model for a spiking process.

The first step in writing down a conditional intensity 
model for a point process is determining what factors, 
or covariates, can influence the occurrence times 

of that process. We have already seen that spiking  
history often plays an important role in determining  
when the next spike will occur, and is therefore one 
class of covariates that should naturally be consid-
ered for neural point process models. If the spike 
train being modeled comes from a larger ensemble 
of recorded neurons that interact with each other, 
it may be useful to consider the firing histories of 
the other neurons in the model as well. For many  
experiments dealing with spiking data, there are 
other signals, or external covariates, besides history 
terms that affect the point process. These external 
covariates are often recorded simultaneously with the 
point process. For example, in any stimulus-response 
experiment, it is expected that some function of the 
stimulus affects the firing probability. Once we estab-
lish which covariates can influence the spike times 
of the point process, we next define a model for the 
conditional intensity as a function of those covari-
ates. For example, if we have a point process with a 
firing probability that changes as a function of time, 
as a function of some external covariate, x(t), and 
is history-dependent, a conditional intensity model 
for that process would be an expression of the form 
(t|H

t
) = g(t,x(t),H

t
), where g(t,x(t),H

t
) is any non-

negative function. The functional relation between a 
neuron’s spiking activity and these biological and be-
havioral signals is often called the neuron’s receptive 
field. In the examples below, we look at some simple 
models for specific neural receptive fields.

example 1: Simple History-Dependent 
Spiking Model
To illustrate the effect of spiking history on current 
spiking probability, we define a conditional intensity 
model that is solely a function of recent past spiking 
activity as seen below:

 . (6)

Similar history-dependent models with higher-
order temporal dependence have been studied by 
Ogata (1988), Brillinger (1988), and Truccolo et al. 
(2005). If t = 1 msec, then the spiking probability, 


k
t, depends on the spike occurrences in the last 4 

msec. This model has four covariates, N
k1

, N
k2

, 
N

k3
, and N

k4
, and five parameters, 

0
, 

1
, 

2
, 

3
, 

and 
4
. If we take 

0
 = log(10), 

1
 = –100, 

2
 = –2, 

3  
= –0.5, and 

4
 = –0.1 we see that these values of the 

coefficients allow a spike train process with an ab-
solute and relative refractory period. If at any point 
in time, no spikes have occurred in the past 4 msec, 
then the firing intensity is 

k 
= exp{log(10)} = 10  

spikes per second. If a spike has occurred in the past 
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millisecond, then the firing intensity drops to around 


k 
= exp{–97.7}, which is negligibly small. In other 

words, it is virtually impossible for this process to fire 
a spike within 1 msec of a previous spike. If a spike 
occurred 2 msec previously, and no other spike is pres-
ent in the 4 msec history, then the firing intensity is 


k
 = exp{log(10)–2}  1.35 spikes per second. This is 

a substantial drop from the baseline firing rate of 10 
spikes per second, but not negligibly small as it was 
immediately after a spike. As a spike recedes into the 
past, its inhibitory effect on the current spiking activ-
ity diminishes. We say that this neuron has an abso-
lute refractory period of 1 msec, when it cannot fire, 
and a relative refractory period of 4 msec, when the 
probability of firing is decreased. Under this model, if 
we had one spike 2 msec in the past and another spike 
4 msec in the past, then the inhibitory effects of each 
past spike combine and 

k
 = exp{log(10)–2–.1}  1.22  

spikes per second—less than the intensity caused 
by either past spike individually. This simple  
example shows that the precise timing of the previous  
spiking activity can alter current spiking propensi-
ty, and that this can be modeled with a conditional  
intensity process.

example 2. Conditional intensity 
model for a hippocampal place cell
Hippocampal place cells have firing patterns that  
relate to an animal’s location within an environment 
(O’Keefe and Dostrovsky, 1971). Therefore, a place 
field model should describe the conditional intensity 
as a function of the animal’s location at each point in 
time. Figure 2A shows the spiking activity of a place 
cell that fires maximally at a point southwest of the 
center of a circular environment. 

Place fields of this type have been successfully mod-
eled with conditional intensity models that have a 
Gaussian shape with respect to position. For exam-

ple, we can construct a conditional intensity model 
of the following form.  

 

 
 

 (7)
The covariates for this model are x(t) and y(t), the 
animal’s x- and y-position. The model parameters 
are(, 

x
, 

y
, 2

x
, 2

y
, 

xy
), where (

x
, 

y
) is the cen-

ter of the place field, exp is the maximum firing 
intensity at that point, and 2

x
, 2

y
, and 

xy
 express 

how the intensity drops off away from the center. It 
is important to note that it is the shape of the place 
field that is Gaussian, not the distribution of the spik-
ing activity, which is a point process. 

If we observe the animal’s location and the spiking 
activity of a hippocampal place field, we can plug the 
conditional intensity model in Equation 7 and the ob-
served spikes into the joint probability in Equation 5,  
to obtain the data likelihood as a function of the mod-
el parameters. We can then find the parameters that 
maximize this likelihood function. The maximum 
likelihood fit for the place field shown in Figure 2  
is illustrated in panel B.

Generalized Linear Models Are a 
Flexible Class of Spiking Models 
That Are Easy to Fit by Maximum 
Likelihood
Linear regression models provide a simple methodol-
ogy for analyzing relationships between continuous 
valued data and a set of explanatory variables. Anal-
ogously, generalized linear models (GLMs) provide a 
simple, flexible approach to modeling relationships 
between spiking data and a set of covariates to which 
they are associated. 

For neural spiking processes, a GLM can be con-
structed by expressing the conditional intensity as 
the exponential of a linear combination of general 
functions of the covariates whose effects we want  
to model:

 . (8)

where  = (
1
,…,

n
) is a vector of n model parame-

ters, x
1
, …, x

k
 is a collection of covariates that are re-

lated to the spiking activity, and f
1
, …, f

n
 is a collec-

tion of functions of those covariates. Notice that the 
linearity refers to the model parameters and not the 
model covariates. Therefore, GLMs can capture non-

Figure 2. Spiking activity of a rat hippocampal place cell dur-
ing a free-foraging task in a circular environment. A, Visual-
ization of animal’s path (blue) and locations of spikes (red).  
B, Gaussian place field model for this neuron with parameters 
fit by maximum likelihood.
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linear relationships between the spiking activity and  
these covariates. 

GLMs have a number of specific theoretical and 
computational advantages. It is easily shown that, for 
a GLM, the likelihood function in Equation 5 will be 
convex, as a function of the model parameters. This 
means that maximum likelihood methods will be 
easy to implement and guaranteed to converge to a 
global maximum. Additionally, the GLM framework 
is integrated into several standard mathematical and 
statistical packages. These properties make the GLM 
framework ideal for rapidly assessing the possible rel-
evance of a large number of covariates on the spik-
ing properties of neurons whose receptive fields have 
not previously been fully characterized (Truccolo et  
al., 2005).

Time Rescaling Provides Natural 
Approaches for Determining the 
Goodness-of-Fit of Neural Spiking 
Models
One essential component of any statistical modeling 
analysis is to verify that the model accurately describes 
the structure observed in the data. Measuring quanti-
tatively the agreement between a proposed model for 
spike train data is a more challenging problem than 
for models of continuous-valued processes. Standard 
distance measures applied in continuous data anal-
yses, such as average sum of squared errors, are not 
designed for point process data. One alternative so-
lution to this problem is to apply the time-rescaling 
theorem (Papangelou, 1972; Ogata, 1988; Brown et 
al. 2002) to transform point processes data into con-
tinuous measures and then assess goodness-of-fit. 
 
Given a point process with conditional intensity 
function (t|H

t
) and occurrence times 0  s

1 
 s

2
, 

…,  s
N(T) 

 T, define 

  , and
 

 , for j=2,…,N(T). (9)

Then these z
j
 are independent, exponential random 

variables with rate parameter 1. 

This result is called the time rescaling theorem because 
we can think of the transformation as stretching and 
shrinking the time axis based on the value of the 
conditional intensity function. If (t|H

t
) is constant 

and equal to 1 everywhere, then this is a simple Pois-
son process with independent, exponential ISIs, and 
time does not need to be rescaled. Any time when 

(t|H
t
) is less than 1, the z

j 
 values accumulate slowly  

and represent a shrinking of time, so that distant 
spike times are brought closer together. Likewise, 
any time when (t|H

t
) is greater than 1, the z

j
 values  

accumulate more rapidly and represent a stretching of 
time, so that nearby spikes are drawn further apart.

Because the transformation in Equation 9 is one-
to-one, any statistical assessment that measures the 
agreement between the z

j
 values and an exponential 

distribution directly evaluates how well the original 
model agrees with the spike train data. A Kolmogorov– 
Smirnov (KS) plot is a plot of the empirical cumula-
tive distribution function (CDF) of the rescaled z

j
’s 

against an exponential CDF. If the conditional in-
tensity model accurately describes the observed spik-
ing data, then the empirical and model CDFs should 
roughly coincide, and the KS plot should follow a 
45° line. If the conditional intensity model fails to 
account for some aspect of the spiking behavior, then 
that lack of fit will be reflected in the KS plot as a 
significant deviation from the 45° line. Confidence 
bounds for the degree of agreement between a model 
and the data may be constructed using the distribu-
tion of the Kolmogorov–Smirnov statistic (Johnson 
and Kotz, 1970).

Another approach to measuring agreement between 
the model and data is to construct a quantile–quan-
tile (Q-Q) plot, which plots the quantiles of the res-
caled ISIs against those of exponential distribution 
(Barbieri et al., 2001; Brown et al., 2002). Q-Q plots 
are useful for visualizing which quantiles of the res-
caled data are well captured and which are poorly 
captured by the model. As in the case of KS plots, 
exact agreement occurs between the point process 
model and the experimental data if the points lie 
along a 45° line.

If the model is correct, the z
j 
 values should be not only  

uniformly distributed, but also independent. Thus, 
even when the KS statistic is small, it is still impor-
tant to show that the rescaled times do not contain 
significant dependence structure. One way to assess 
independence up to second-order temporal correla-
tions is to compute the autocorrelation function of 
the transformed rescaled times. If the autocorrelation 
at any lag is significant, it suggests that the proposed 
conditional intensity model does not fully capture 
the structure in the data.

example 2 Continued: KS and Q-Q 
plots of a hippocampal neuron
We can construct KS and Q-Q plots for the trans-
formed place cell data using the model fit shown in 
Figure 2. In this case, the KS plot, shown in Figure 3A,  
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deviates significantly from the 45° line at multiple 
locations. By examining the Q-Q plot in Figure 3B, 
we see that the model results in too few small res-
caled ISIs, too many midrange ISIs, and too few large 
ISIs. This suggests that this inhomogeneous Poisson 
model for the spiking activity is unable to completely 
describe the structure in the data. It is likely that a 
similar model that incorporated spike history would 
provide a much closer fit to the data.

Conclusions
Point process methods are vital for understanding 
how neurons represent information about external 
biological and behavioral signals. In particular, point 
process theory provides approaches for visualizing 
spike train data, constructing and fitting neural re-
ceptive field models, and assessing the ability of these 
models to explain structure in the data.

At the heart of these methods is the conditional in-
tensity function, which provides a unified mathemat-
ical framework for analyzing point process data. The 
conditional intensity implicitly defines the instanta-
neous probability of spiking as a function of past fir-
ing history and external covariates. A neural model 
can be constructed by writing down an equation for 
the conditional intensity in terms of these covariates 
and a set of model parameters. From the definition 
of the conditional intensity, it is easy to show that 
the likelihood function of any point process model 
of a neural spike train then has a canonical form 
given by Equation 5. For any observed spike train, 
maximum likelihood methods can then be applied to 
find the model parameters that best fit the data and 
to compute uncertainty about those parameter esti-
mates. The likelihood framework therefore provides 
an efficient way to extract information from a neural 
spike train. Likelihood methods are some of the most 
widely used paradigms in statistical modeling owing 
to their numerous optimality properties and exten-
sive theoretical underpinnings.

The conditional intensity function was also funda-
mental for constructing goodness-of-fit tests, many of 

which are based on the time-rescaling theorem. As-
sessing goodness-of-fit is a crucial, often overlooked 
step in neuroscience data analyses. This assessment is 
essential for establishing what features of data a mod-
el does and does not describe, determining whether 
the model is appropriate for making statistical infer-
ences about the neural system being studied, and es-
tablishing how reliable those inferences maybe.

Although we have focused here on analyses of  
single neural spike train time-series, the methods can 
be extended to analyses of multiple, simultaneously  
recorded neural spike trains (Chornoboy et al., 1988; 
Okatan et al., 2005). These methods are becom-
ing increasingly important since recent technology  
allows us to record simultaneous spike trains from 
large neural ensembles.
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About Ethology
In the field of systems neuroscience, measuring  
behavior is often the first step to take when study-
ing how the brain operates. One measurement  
approach involves using a well-established behav-
ioral paradigm, such as training a monkey to make 
a saccadic eye movement toward a target, or train-
ing a rat to push a lever to obtain a food reward. In 
such experiments, the behavior of the trained animal  
enables the researchers to test hypotheses regarding 
the associated neuronal activity. Note that, quite  
often, what we call “simple behavior” is not simple 
at all; rather, we are imposing simplicity (by restrain-
ing the animal) on the situation or recording the  
outcome of complex movements.

A second approach centers on studying patterns of 
free, naturally occurring behaviors but without mak-
ing any attempt to simplify them. The research-
ers then try to associate those behaviors with brain 
mechanisms. Examples of such behaviors are rat ex-
ploratory movements in local space and developmen-
tal song learning in birds. The measurement, analysis, 
and interpretation of such behaviors are challenging 
but can potentially lead to new hypotheses: namely, 
those pertaining to the discovery of mechanisms we 
could not have imagined before examining these pat-
terns. Ethology is the science of studying the struc-
ture of natural behavior, that is, what happens when 
the animal does what it is designed to do. In neuro-
ethology, we attempt to associate those behavioral 
patterns with underlying structures and dynamics 
within the brain.

Building Blocks of Behavior
For more than a century, investigators have been 
looking for an appropriate approach to studying be-
havior at the molecular level. The question remains, 
can we break down behaviors into units that relate 
animal movements to distinct neurophysiological 
mechanisms? For example, phototaxis (movement 
toward a light source) can be observed in plants and 
primitive animals. Such a phenomenon can be ex-
plained by a servomechanism. In much the same way 
that a self-guided missile automatically pursues an 
airplane by following the heat emitted by its engine, 
plant and animal organisms are equipped with sen-
sors and differences in light intensity across sensors 
are used to compute an error signal, which is then 
used to make appropriate steering movements that 
minimize the error and accurately follow the target. 
Carefully measuring the light input and the steering 
movements needed might allow us to infer something 
about the servomechanism and to assess the delay, 
the gain, and the complexity of the error signal. Of 

course, without some knowledge of those features,  
it would be difficult to interpret the attendant neu-
ronal activity.

Reflexes can also be thought as servomechanisms, ex-
cept that the reflex ring (from the sensor to the spinal 
cord and back to the muscle) monitors and controls 
an internal state, such as the length of a muscle. The 
interest in reflexes as units of automated behavior led 
Sir Charles Sherrington (about one hundred years 
ago) to perform the first quantitative measurements 
of behavior. In essence, all Sherrington did was to 
connect a thread and a pen to the leg of a spinal frog 
so as to record traces of its reflexive movements on a 
rolling paper. But looking at those traces uncovered 
the foundation of modern neuroscience and won 
Sherrington a Nobel Prize in Physiology or Medi-
cine in 1932. The traces showed that reflexes have a 
stereotyped threshold, accurate latencies, and after-
discharges. The interactions among neurons could be 
explained as, among other features, summation over 
space, summation over time, facilitation, inhibition, 
and chaining. Further, analysis of latencies allowed 
Sherrington to infer the existence of synapses (a term 
that he coined) between neurons.

Like a Newtonian equation (which might be prac-
tical for an engineer but inappropriate in a more 
general context), Sherrington’s findings on reflexes 
have practical implications but are not appropri-
ate building blocks for studying behavior in general 
(Glimcher, 2003). During the middle of the twenti-
eth century, a new scientific field emerged: ethology. 
Its principal founder, Konrad Lorenz, was a zoologist 
who believed that animal behavior is a legitimate 
component of biological structure; to wit, a monkey 
possesses monkey genes, monkey bones, and uniquely 
monkey behavior. Just as investigating the structure 
of genes and skeletons can help us understand func-
tion in a comparable (evolutionary) context, so too 
can behavior be investigated as an extension of other 
fields of biology, e.g., comparative anatomy.

According to Lorenz, the units for quantification are 
the instincts: innate behaviors, with well-defined 
core structure, among which he hoped to find homol-
ogies across species. To a large extent, this attempt 
failed (Golani, 1992). Nevertheless, the framework 
of ethology—putting efforts into describing behav-
ioral structures in an “appropriate manner” (as vague 
as this might sound)—has succeeded in several ar-
eas of neuroscience, leading to the emergence of the 
specialty of neuroethology. This chapter will focus 
on one of those neuroethology fields: developmental 
song learning in birds.
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Informatics and Quantifying
Behavior
The dramatic increase in computational power and 
the decrease in data storage costs have made it easy 
to compile and manage large sets of behavioral data. 
For example, until the 1990s, all the birdsong learn-
ing literature was based on sparse sampling (say, a few 
minutes of singing recorded weekly). We can now 
record an entire developmental vocal repertoire for 
each animal, namely by looking at every song syllable 
produced by the bird during its lifetime with no sam-
pling restrictions (approximately 1-2 million sounds 
per bird). Because storage costs are so low (~$0.15/
Gb), it makes perfect sense to record behavior con-
tinuously, as long as the animal is in the recording 
environment. Of course, one must think carefully 
about how to organize the data, maintain the data-
bases, and develop approaches to easily access and 
analyze arbitrary chunks of information. However, 
this is what informatics facilitates, and there are suf-
ficient off-the-shelf methods for accomplishing this 
(Tchernichovski et al., 2004).

Returning to the issue of building blocks of behavior, 
by using appropriate databases, one can easily exam-
ine behavioral patterns across multiple time scales, 
attempting to recognize patterns that cannot be seen 
within smaller samples. Using birdsong development 
as a case study, I will present a short overview of such 
approaches, starting from extracting features, to de-
tecting production categories at different time scales, 
and then following those over the course of develop-
mental trajectories.

In contrast to obtaining behavioral data, obtaining 
neuronal data is difficult, expensive, and in most 
cases, much more limited in scope (e.g., in duration 
of recording, number of neurons recorded from). 
One bit of advice I always give my collaborators is 
to try collecting behavioral data over an extended 
period. Even if one can record electrophysiology for 
only a few days, it is still useful for tracking the en-
tire song development of that bird. Later on, such 
behavioral records might become essential to an 
accurate interpretation of the neuronal data. As in 
diagnosis in medicine, the history of the case (here, 
song development) is often the most important clue 
to understanding what is going on right now within 
the birdsong structure.

Overview of Song Behavior
In general, birds sing to attract mates and defend their 
territories (Catchpole and Slater, 1995). Of course, 
the males of many other animal species put effort into 
attracting mates and defending their territories using 

other means, e.g., by marking their territory’s borders. 
So is there a qualitative difference between birdsong 
and other means of defending territories and attract-
ing mates? We do not know the answer, but most 
people agree that there is something very special 
about birdsongs: Songs are learned, and birds have 
local “cultures” of singing in a certain way—local dia-
lects of a sort. Further, birdsongs are often esthetically 
pleasing, even musical (Rothenberg, 2005). One mo-
tivation for assessing the qualities of birdsong is in 
order to provide a rationale for their beauty.

On a more prosaic level, birdsongs fit well into the 
concept of instinct even though they carry a strong 
learning component. Songs can be triggered by an 
appropriate key stimulus (e.g., presenting a female) 
and yet are internally driven. For instance, isolate 
male zebra finches spend hours every day singing (a 
so-called vacuum activity, according to Lorenz). In 
addition, birdsongs are highly structured and stereo-
typed. Although songs are learned, song acquisition 
by itself could be considered instinctive because, 
in many species, the bird is “programmed” to learn 
its song only during a narrow, sensitive period of its 
development. The narrowest form of “programmed” 
learning is called imprinting, when chicks learn to 
recognize their mother during their first day of life 
and acquire some notion of their species’ social and 
sexual identity.

In the context of system neuroscience, studying bird-
song has become popular because it is a good model 
for developmental learning in general, and speech de-
velopment in particular. Its main advantages are ease 
of measuring singing behavior and song development 
(over weeks, as opposed to years in humans), an animal 
subject with a compact brain, and distinct song nuclei 
that can be recorded while the bird is vocalizing.

Analysis of song behavior across 
multiple time scales
Developmental learning is difficult to study because it 
occurs over multiple time scales: e.g., during morning 
singing, then sparsely during the day, and even during 
sleep (Dave and Margoliash, 2000; Deregnaucourt et 
al., 2005). It takes a few weeks of “practice” before 
the bird is fully capable of imitation. How can we 
measure behavior so as to bridge these time spans?

The song of an adult zebra finch is composed of a 
few distinct syllable types repeated in fixed order. 
Figure 1 presents a sonogram-like display of a song. 
We performed multitaper spectral analysis and com-
puted directional spectral derivatives. These provide 
us with a similar image to that of the spectrogram 
but of superior quality, because they optimize the 
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detection of frequency traces (Tchernichovski et al., 
2000). As shown in the example, it is easy to detect 
a stereotyped song structure with repeating syllable 
types (marked in colors) in each burst of song.

As noted earlier, this highly stereotyped birdsong was 
imitated from an adult tutor (in this case, from play-
back recordings) when the bird was young. Because we 
recorded the entire song-learning history of this bird, 
we can now examine how this song came about. One 
of the simplest approaches is to look at the entire song 
development as an image, as if viewing a sonogram.

Figure 2 presents two sound spectrograms: On the 
left panel, we see a male’s long call, with a duration 
of about 100 ms. On the right panel, we see a very 
different spectrogram (Saar and Mitra, 2008). Using 
a slow-varying feature, such as the amplitude of the 
songs, we performed spectral analysis over long time 
windows (hours instead of milliseconds). We did so in 
order to examine song structure across lower frequen-
cies and over the developmental time scale. These 
low frequencies happen to correspond to the song’s 
rhythm, whereas in regular sonograms, frequencies 
reveal pitch.

Just as the sonogram’s left panel reveals frequency 
downmodulation during a call (over a course of about 
50 ms), the rhythm-gram at right reveals rhythm 
downmodulation, which occurred approximately at 

days 50-55 post-hatching. We can now take a step 
back and look more carefully at what happened during 
day, when the rhythm frequency was decreasing. Here 
we can see how the bird has “time-warped” a syllable 
and increased the motif’s duration by about 100 ms.

Frame-based and segment-based
analysis
It is often useful to extract features from the raw be-
havioral signal. As shown in the previous section, 
we can measure rhythm using slow-varying features 
such as amplitude envelope. Standard methods exist 
for analyzing and compressing signals, e.g., spectral 
analysis and principal components analysis. How-
ever, whenever one has an opportunity to extract 
biologically relevant features from the signal, it is 
worth a try. Much of our progress in analyzing song 
development stemmed from using spectral analysis as 
a first step and extracting meaningful features as a 
second step (Tchernichovski et al., 2000). For bird-
songs, we calculate features that are thought to corre-
late with articulation; these include pitch, frequency 
modulation (FM), and Wiener entropy (estimating 
the width of the power spectrum). These features are 
calculated continuously during 10-ms time windows 
and in 1-ms steps. Information about these features 
is saved to a database, and we then segment the data 
and calculate first- and second-order statistics of 
those features in each syllable, such as mean pitch 
and mean FM.

Analysis of song feature distribution
One advantage of having large data sets is that we 
can base our investigation on large-scale distribution 
of features. For example, Figure 3 presents develop-
mental histograms of song features. Starting from the 
duration histogram (left panel), each peak represents 
a syllable type (syllable FM, middle panel; syllable 
entropy, right panel), the development of which the 
ridges show us.

Figure 1. Spectral images derived from a zebra finch song 
motif. Red bars indicate syllable boundaries.

Figure 2. Left panel: sonogram of a male zebra finch call. 
Right panel: rhythm-gram of song development.

Figure 3. Developmental histograms of syllable features. Each 
row corresponds to a day. Histograms are based on all sounds 
produced in a given day. y-axis represents days old.
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One interesting observation is that we can see no 
ridges during early song development (and before 
training the bird with song playbacks). Instead, syl-
lable types emerge during song development, and the 
large amount of data makes it easy to see when and 
how the graded signal becomes clustered.

Looking at developmental histograms of different fea-
tures (e.g., FM, Wiener entropy) also reveals different 
dynamics. Nonetheless, all features and all birdsongs 
we have analyzed so far share common characteris-
tics: Ridges tend to move away from each other dur-
ing development and sometime split (but not merge). 
We call this effect “differentiation of syllables.”

Summary
We started our investigation by asking about units of 
behavior, and we ended up with descriptive models 
that present simple feature distributions. By looking 
at such distribution, we can detect significant events 
such as the emergence of syllable types followed by 
differentiation, or smooth downmodulation of rhythm 
frequencies when the bird “stretches out” its emerging 
motif. To some extent, a good and simple descriptive 
model can provide answers similar to those Lorenz 
envisioned. Such a description of animal behavior 
naturally lends itself to a parallel investigation at the 
speech-forming and neurological levels.
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Tutorial: Denoising and Frequency 
Localization of an Imaging Time 
Series
In this tutorial, we will cover the basic steps to fol-
low when using a singular value decomposition 
(SVD) and Thomson F-test in order to reduce the 
amount of noise in a neural imaging data set (Mitra  
and Bokil, 2008). Figures 1 through 5 depict the 
steps involved.

It should be remembered that, in this type of analy-
sis, an image is considered to be primarily a vector 
of values (Fig. 1, top). That is, the pixels that were 
originally arranged in two dimensions are arranged as 
elements of a vector, and the two-dimensionality is, 
for the moment, not depicted. A movie of imaging 
data taken over time is therefore described as a data 
matrix in which each row is an image vector, and 
time progresses row by row from the initial image to 
the final image (Fig. 1, bottom).

Therefore, if you are working with imaging data 
saved in a MATLAB.mat file, for example, in the 
variable DAT, where DAT has elements DAT (i,j,k) 
(with i = 1...nt, j = 1...nx and k = 1...ny), then with 
the command

X = reshape(DAT, [nt nx*ny]);

you can make a data matrix, X, out of your imag-
ing data. This data matrix has nt rows and nx ×  
ny columns.

When performing an analysis for the first time, it is 
often useful (and prudent) to plot the data matrix. 
To do this, first subtract the mean of each pixel time 
course (each column) from each time course and 
make a pseudo-color plot of the data. Much of the 
structure of the data (including possible measurement 
artifacts) may be seen in such a plot. Often, more of 
the dynamics may be seen in this way than by viewing 
a movie of the raw imaging data. We can do this for 
our data matrix, X, using the following commands:

% subtract mean pixel value from each pixel
X = X – repmat(mean(X, 1), [nt 1]);
% make pseudo-color plot of matrix
pcolor(X); shading flat;

Raw imaging data are typically noisy. Sources of 
noise can be either shot noise from fluctuations in 
the number of photons arriving at the detector or 
dark noise arising from thermal fluctuations in the 
measurement apparatus. Patterned measurement ar-
tifacts from the imaging device and changes in the 
physiology of the system being imaged can often be 
significant sources of noise as well.

The judicious use of an SVD can help reduce such 
noise in imaging data sets. An SVD may be thought 
of in many ways, one useful conceptualization being 
that the SVD takes the raw data matrix (Fig. 2, top 
row) and decomposes it into a sum of many subma-
trices (Fig. 2, bottom row). Each of the submatrices is 
the combination of an eigenvector and a time course. 
In turn, each row of the submatrix is proportional to 
the pixel values of the eigenvector, and each column 

Figure 1. The first step in the analysis of optical imaging data 
is to list the pixels in the form of a vector (top panel). Then the 
image vectors are arranged sequentially in time, thereby form-
ing a data matrix.

Figure 2. An SVD is performed on the data matrix,  
re-sulting in a set of eigenimages, singular values, and time-
varying coefficients.
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of the submatrix is proportional to the time course. 
The overall weight of the submatrix formed in this 
way is given by the singular value associated with the 
eigenvector and the time course.

MATLAB has a routine for performing an SVD on a 
data matrix. To perform an SVD on our data matrix, 
we type

[u, s, v] = svd(X, 0);

The matrices u, s, and v that this routine outputs are 
the left eigenvectors (these are time-varying coeffi-
cients), the singular values, and the right eigenvec-
tors (often called eigenimages), respectively, of the 
matrix X.

If you add up all the submatrices, the result is identi-
cally equal to the original data matrix. Sometimes, 
however, some of the submatrices may be identified 
as contributing only noise. In this case, they may 
be deleted, and the resulting reconstruction of the 
original data matrix will be less noisy. One common-
ly used method for choosing eigenvectors and time 
courses that are not part of the noise is to note the 
location of a pronounced “knee” in a plot of the sin-
gular values. This knee is used to identify a threshold 
beyond which eigenvectors are discarded.

To visualize the singular values, type the command

% plot singular values on 
semilogarithmic plot
semilogy(diag(s));

To reconstruct the data matrix using only the first M 
eigenvectors, type

% reconstructed data matrix using only M 
eigenvectors

Xrecon = u(:,1:M) * s(1:M,1:M) * v(:,1:M)’;

You can use several different values for M and use 
a pseudo-color plot to compare the reconstruction 
with the original data.

The denoising process is depicted in Figure 3. First, 
the data matrix is formed (Fig. 3, top row). Next, an 
SVD is performed on the data (Fig. 3, middle row). 
Finally, the results from the SVD are examined and 
noisy eigenvectors discarded (Fig. 3, middle row; note 
the singular values to the left of the knee inside the 
red circle). The data matrix is then reconstructed by 
reversing the SVD decomposition (adding up all the 
nondiscarded submatrices), resulting in a denoised 
data set. Since it is hoped that only random noise was 
discarded in this process, SVD may also be viewed 

as a data compression method. The retained eigen-
vectors and their time courses may be thought of as a 
low-dimensional summary of the data set.

The above method is a useful first step for denois-
ing the neural imaging data. However, a number of 
possible problems can arise. One major problem is 
that some of the eigenvectors before the knee may 
be noisy. The reason for this phenomenon lies in the 
fact that the SVD is a blind method for analyzing 
data: The eigenvectors represent covarying informa-
tion in the data set and nothing more, and the SVD 
does not contain any model of the signal. Therefore, 
for instance, patterned noise from the imaging ap-
paratus (in which many pixels have covarying time 
courses) is likely to be depicted in the first few eigen-
vectors. Another problem is that small sources of 
covariance (possibly related to a signal of interest) 
may be discarded along with the eigenvectors below 
the knee.

One method for obtaining improved reconstructions 
of neural imaging data is to incorporate periodic-
ity into the experimental design by using a periodic 
stimulus (Kalatsky and Stryker, 2003; Sornborger 
et al., 2005; Xu et al. 2008). By doing this, we are 
putting an extra “hook” in the data that can be used 
later to more accurately identify the information that 
is truly relevant to our experiment.

In Figure 4, we show an SVD analysis of calcium imag-
ing data taken of neural tissue that was stimulated pe-
riodically. Instead of the standard visualization in time 
(Fig. 4, top row, left panel), the frequency spectrum of 

Figure 3. The data matrix may be reconstructed using only 
a subset of the eigenimages, their associated singular values, 
and time-varying coefficients. This reconstruction procedure 
can significantly reduce the noise in the data matrix. 
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each left eigenvector (time-varying coefficient) was 
estimated using Thomson’s multitaper spectral esti-
mation method (Thomson, 1982) (top row, top right 
panel). Using Thomson’s F-test, harmonic peaks in 
the spectrum at the stimulation frequency were de-
tected and then estimated and extracted from the left 
eigenvectors (top row, bottom right panel). This pro-
cess was performed for all left eigenvectors.

To calculate a multitaper estimate of the spectrum 
of the first 10 left eigenvectors and to visualize  
the information, we use the Chronux function 
“mtspectrumc” and a pseudo-color plot of the data:

% calculate frequency spectrum for a 
left eigenvector
[S, f] = mtspectrum(u(:,1:10), params);
% plot the spectrum
pcolor([1:10], f, 10*log10(S)); shading flat;

To perform an F-test on the first 10 left eigenvectors, 
we use the Chronux function f-test:

% perform f-test on a left eigenvector of X 
at frequency
% set sampling frequency parameter
params.Fs = 10; 
% perform f-test
[Fval, A, fqs, sig, sd] = ftestc(u(:,1:10), 
params);

This Chronux code outputs Fval, the value of the  
F-statistic for each frequency and channel; A, the 
complex line amplitude for each frequency and chan-
nel; fqs, the frequencies that the F-test was evaluated 
at; sig, the significance level of the test; and sd, the 
standard deviation of the amplitude.

A contour plot of the F-statistics across all frequen-
cies for the first 10 left eigenvectors may be made 
with the following command:

% plot f-statistic for first 10 left 
eigenvectors using contour plot
contour(Fval, [sig sig], ‘k’);

The frequencies at which significant harmonics were 
detected in the first left eigenvector may be output 
with the following command:

% frequencies of significant harmonics
fqs(find(Fval(:,1) > sig))

And the complex amplitudes of the significant har-
monics are as follows:

% amplitudes of significant harmonics
A(find(Fval(:,1) > sig), 1)

Using the amplitude and frequency information from 
all the harmonics, we can reconstruct the statistically 
significant periodic part of the time series for the first 
left eigenvector:

% reconstruct periodic part
amps = A(find(Fval(:,1) > sig, 1);
fs = fqs(find(Fval(:,1) > sig));
sg = zeros(size(u(:,1)));
for I = 1:nh
  sg = sg + real(amps(i) * sin(2*pi*fs(i)*[1:nt]/
params.Fs) …
             + amps(i)’ * cos(2*pi*fs(i)*[1:nt]/
params.Fs);
end;

In general, we would loop through all the left eigen-
vectors in order to obtain all the periodic components 
in the data. This yields the periodic components for 
each of the first 10 left eigenvectors, sg(i,j), where 
i = 1…nt and j = 1…10. Note that we could have 
investigated more than just the first 10 left eigenvec-
tors; this is just an example. To reconstruct the peri-
odic part of the entire data matrix, we simply put the 
pieces back together:

Xperiodrecon = sg(:,1:10) * s(1:10,1:10) * v(:,1:10)’;

The results of the spectral and harmonic analyses of 
the first 10 time courses are depicted in Figure 4, bot-
tom row, left panel. This panel shows a pseudo-color 
plot of the log-spectra of all time-varying coefficients 
plotted side by side. Note the bright yellow peaks in 
the third, fourth, and fifth time courses. In Figure 4 
(bottom row, right panel), we plot contours of the 
harmonic peaks that were found across all the time-
varying coefficients. Note the contours correspond-
ing to the spectral peaks in the left panel.

Figure 4. When a periodic stimulus/response experimental par-
adigm has been used, Thomson’s spectral analysis may be used 
to visualize periodicity in the data set, and Thomson’s F-test 
may be used to detect and estimate harmonics in the data.
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Figure 5 depicts the complete analysis process.  
After construction of the data matrix, we perform the 
SVD. Then, using the F-test, we extract statistically 
significant periodic responses in the data. Next, only 
the sinusoids with frequencies that are at multiples of 
the stimulus frequency are extracted. A reconstructed 
data set is then made of just the periodic response.

Conclusion
Denoising data using the above methods can be  
extremely useful for improving the signal-to-noise  
ratio of neural imaging data. We have discovered 
that data features that would otherwise be missed can 
often be found using these methods. In the data set 
used in the above example, clear evidence was found 
of functional neuronal projections from one neuron 
to another within the neural tissue that was im-
aged. Without applying our methods, this functional  
information would not have been detectable.
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Introduction
In this chapter, we will work through a number of  
examples of analysis that are inspired in part by a few 
of the problems introduced in “Spectral Analysis for 
Neural Signals.” Our purpose here is to introduce and 
demonstrate ways to apply the Chronux toolbox to 
these problems. The methods presented here exem-
plify both univariate analysis (techniques restricted 
to signals elaborated over a single time course) and 
bivariate analysis, in which the goal is to investigate 
relationships between two time series. Problems in-
volving more than two time series, or a time series 
combined with functions of spatial coordinates, are 
problems for multivariate analysis. The chapters 
“Multivariate Neural Data Sets: Image Time Series, 
Allen Brain Atlas” and “Optical Imaging Analysis for 
Neural Signal Processing: A Tutorial” deal explicitly 
with these techniques and the use of the Chronux 
toolbox to solve these problems.

“Spectral Analysis for Neural Signals” introduces the 
spectral analysis of single-unit recordings (spikes) 
and continuous processes, for example, local field  
potentials (LFPs). As shown in that chapter, the 
multitaper approach allows the researcher to com-
pute and render graphically several descriptions of 
the dynamics present in most electrophysiological 
data. Neural activity from the lateral intraparietal 
area (LIP) of the alert monkey was used to calculate 
LFP spectrograms and spike-LFP coherograms and, 
most importantly, measures of the reliability of these 
estimates. Although the computations required to 
produce these descriptions are easily attainable us-
ing today’s technology, the steps required to achieve 
meaningful and reliable estimates of neural dynam-
ics need to be carefully orchestrated. Chronux pro-
vides a comprehensive set of tools that organize these 
steps with a set of succinct and transparent MAT-
LAB scripts. Chronux analysis software also clears up 
much of the confusion surrounding which of the pa-
rameters that control these calculations are crucial, 
and what values these parameters should take, given 
the nature of the data and the goals of the analysis.

Chronux is downloadable from www.chronux.org. 
This software package can process both univariate 
and multivariate time series data, and these signals 
can be either continuous (e.g., LFP) or point process 
data (e.g., spikes). Chronux can handle a number of 
signal modalities, including electrophysiological and 
optical recording data. The Chronux release includes 
a spike-sorting toolbox and extensive online and 
within-MATLAB help documentation. Chronux 
also includes scripts that can translate files gener-
ated by NeuroExplorer (Nex Technologies, Little-
ton, MA) (.NEX), and the time-stamped (.PLX) and 

streamed (.DDT) data records collected with Plexon 
(Dallas, TX) equipment.

We will proceed through components of a standard 
electrophysiology analysis protocol in order to illus-
trate some of the tools available in Chronux. Figure 1 
charts the basic steps required for handling most elec-
trophysiological data. We will assume that an editing 
procedure has been used to sort the data into con-
tinuous signals (LFPs or EEGs) and spikes. We will 
also advance to a stage that follows both the spike 
sorting and data conditioning steps (detrending and 
removing artifacts, including 60 Hz line noise). We 
will return to the detrending and 60 Hz line noise 
problems later in the chapter.

Typically, a first step to take in exploratory data analy-
sis is to construct a summary of neural activity that is 
aligned with the appearance of a stimulus or some be-
haviorally relevant event. Recall that in the example 
described in “Spectral Analysis for Neural Signals,” 
the monkey is challenged with a delay period dur-
ing which it must remember the location of a visual 
target that was cued at the beginning of a trial. Each 

Figure 1. Electrophysiological data analysis protocol.
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3 s trial is composed of a 1 s baseline period followed 
by a 2 s period containing the delay and response  
periods. The neural signals, contained in the tutorial 
data file DynNeuroLIP .mat, include three LFP signals 
and two point-process time series (i.e., two channels 
of spike times). Nine trials associated with one target 
direction are included, as are 72 trials of the baseline  
period combined across eight possible target posi-
tions. We will first produce an estimate of the firing 
rate associated with the delay period and then pro-
ceed to look for interactions between the two spikes 
and for any temporal structure in the LFPs.

A script that will take us through these steps can be 
launched by typing

>> lip_master_script

at the command prompt. The first figure generated 
by the script (Fig. 2) details the spike times (as ras-
ter plots) of the two single units for all the baseline 
periods (top row) and for the subset of trials (bottom 
row) associated with one particular target. Note that 
the number of spikes increases roughly 1 s after the 
start of the trial. This increase indicates that some-
thing is indeed happening at the start of the delay  
period and suggests that these neurons may play a role 
in establishing a working memory trace of one target’s 
location. The tutorial script will also produce results 
as in Figure 3, where we see the three LFP signals 
that were recorded alongside the spikes. These signals 
likewise demonstrate a change in activity at the start 
of the delay period. As we proceed through the tuto-
rial, we will see how Chronux can be used to further 
characterize the neural activity in these recordings.

Regression
Figure 4 illustrates one characterization that is of-
ten used for depicting spike data. The top subplot of 
the figure illustrates a standard frequency histogram,  
using a bin size of 104 ms, for a single trial of spike 
response. The rate is calculated by dividing the 
spike count in each bin by the bin width. The bot-
tom subplot of the figure shows a smooth estimate of 
the firing rate generated by applying a local regres-
sion algorithm, locfit. In order to plot the regression 
fit and produce 95% confidence bounds for the rate 

Figure 2. Raster plots for 2 isolated spikes recorded in monkey 
LIP. Each dot represents the time of occurrence of a spike. Each 
row details the spike times from a different trial in the experi-
ment. Top row: baseline period (first second of each trial) for 
all trials. Bottom row: complete trials, including the baseline 
period (0-1 s) and delay and response periods (1-3 s) for a 
subset of trials associated with a single target.

Figure 3. Local field potentials (LFPs) recorded concomitantly 
with the spikes shown in Fig. 1. The LFPs are averaged over 
the trials elaborated in the spike raster plots in Fig. 1. Top row: 
baseline period; bottom row: complete trials. Voltage values 
for the LFPs are in units of microvolts.

Figure 4. Spike rate estimates. Top row: frequency histogram 
constructed from a single trial for one isolated spike. Bin size = 
104 ms. Bottom row: output from Chronux script locfit. The 
solid line depicts an estimate of the spike rate. The dashed 
lines indicate the 95% confidence interval for this estimate. 
The dots along the time access represent the spike times. The 
nearest neighbor variable bandwidth parameter, nn, is set to 
0.7 for locfit.
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estimate, our tutorial script has run locfit using the 
following syntax:

>> fit=locfit(data,’family’,’rate’)

followed by

>> lfplot(fit)

and

>> lfband(fit)

(Fig. 4, dashed lines in bottom subplot). In this case, 
we have opted to fit our single-trial spike train to a 
rate function by setting the family parameter of locfit 
to rate. Alternatively, we could have smoothed the 
spike data by choosing to fit it to a density function 
in which the smoothing is meant to determine the 
probability of firing a spike as a function of time. 
We generated density estimates by setting the family  
parameter in locfit to density instead of rate.

Note the dots that appear along the time axis of the 
bottom subplot: These are the spike times for the 
trial under consideration. Locfit will fit a linear, qua-
dratic, or other user-specified function to some subset 
of the spikes, using each spike time in turn as the 
center point for the least-squares fit. The number 
of spikes in each subset can be stipulated in one of 
two ways: (1) as a fixed “bandwidth”, i.e., time in-
terval. For example, if the parameter h=1 (and the 
spike times are given in units of seconds), then each  
local fit to the data will include 1 s of the trial; or 
(2) with h=0, and nn (nearest neighbor parameter) 
set to some fraction such as 0.3, in which case the 
time interval surrounding each spike will expand (or 
shrink) until 30% of the total number of spikes in the 
time series is included.

>> fit=locfit(data,’family’,’rate‘,’h’,1)

will produce a fit using a fixed bandwidth of 1 s. The 
bottom subplot of Figure 4 was produced with a near-
est neighbor variable bandwidth,

>> fit=locfit(data,’family’,’rate‘,’nn’,0.7)

where nn was set to 0.7. If we change this value to 
a smaller fraction, say 0.3, then the smoothing will 
be done more locally, thereby revealing more of the 
temporal fluctuations in the spike rate (Fig. 5).

The data input to locfit can include multiple tri-
als (following the data format rules outlined in the  
Appendix to this chapter). As seen in Figure 6 (which 
our tutorial script will also generate), the resulting fit 

to our two spike trains appears smoother than the fit 
to the single trial, even though the nearest neighbor 
parameter (nn) is still 0.3. Although the regression is 
always done on a single time series, in this case, all the 
spike times from all the trials for each single unit are 
collapsed into one vector. Note how a smoother esti-
mate arises in Figure 6 than in Figure 5 owing to the 
greater continuity across the samples (spike times) 
of the underlying rate function. Jackknife confidence 
limits can be computed for the multiple trials case 
by holding out each trial in turn from the regression 
fit and then calculating the mean and standard error 
from the ensemble of drop-one fits.

Spectra
We now begin our frequency–domain exploration of 
the dynamics of the LFPs and spikes in our data set. 
Our tutorial script will now generate Figure 7, which 
illustrates a multitaper spectrum calculated from 
the continuous voltage record in one LFP channel 
(sampling rate = 1 KHz) for a single trial. Only the 
delay period of the trial is included in the data array. 
The tutorial script lip_master_script .m includes the  

Figure 5. Spike rate estimate using locfit in Chronux. Here 
the nearest neighbor variable bandwidth parameter, nn, is set 
to 0.3.

Figure 6. Spike rate estimates using locfit. Estimates are con-
structed using all spike times from all trials shown in the bot-
tom row of Figure 2. The nn parameter of locfit is set to 0.3.
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following three lines, which can also be run from the 
command prompt:

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f);    .

The first line sets the sampling rate and, therefore, 
the frequency resolution and range of the spectrum. 
Many Chronux functions use a structure, params, that 
contains a number of fields for assigning values to the 
parameters governing the Fourier analysis routines 
(see Appendix for more about the fields for params). 
The spectrum S and frequency range f used in the cal-
culation are the outputs of mtspectrumc. A Chronux 
script (the third line in this code segment) can be 
used to perform special plotting. The default setting 
for plot_vector produces a plot with a log transform of 
S as a function of a linear frequency range. To plot 
the spectrum on a linear-linear set of axes, use

>> plot_vector(S,f,‘n’)   .

In Figure 7, the spectrum is plotted over a default 
range: from 0 Hz to the Nyquist limit for the sam-
pling rate, 500 Hz. The output range of S and f is 
restricted by setting another field in the params struc-
ture, params .fpass. Figure 8 presents the LFP spectrum 
from the single trial but now with

>>params.fpass=[0 100]   ,

and then, as before

>>params.Fs=1000;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f);   .

The tutorial script will generate other examples of 
band-limited spectra after you choose lower limits 
and upper limits for the frequency range.

The spacing in the frequency grids used by the fast 
Fourier transforms (FFTs) called by Chronux can be 
adjusted through another field in the structure params. 
If params .pad = –1, then no zeros will be appended to 
the time series, and the frequency grid will be set by the 
defaults imposed by MATLAB. With params .pad = 0,  
the time series will be padded with zeros so that its 
total length is 512 sample points. For params .pad = 
1,2,… the zero padding produces time series that are 
1024, 2048,…, samples in length, respectively. As 
one can see by executing the next code segment,

>> params.pad=1;
>>[S,f]=mtspectrumc(data,params);
>> plot_vector(S,f,‘y’)
>> params.pad=3;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f,‘m’)   ,

the spectrum generated with a padding factor of 3 
(Fig. 9, red) is computed on a much denser grid than 
the spectrum computed with a padding factor of 1 
(Fig. 9, blue plot).

One advantage of taking the multitaper approach to 
spectral analysis is the ability to control the degree 
of smoothing in the spectrum. This is accomplished 
by adjusting the time-bandwidth product of the 
data windowing, which in turn is established by the 
choice of the number of Slepian tapers to use. The 
tutorial script lip_master_script .m again calculates 
the spectrum of the single trial LFP signal, but now 
with two different degrees of smoothing. As before, 
the number of tapers to use is set by a field in the 

Figure 7. Multitaper spectrum for a single trial LFP; data  
selected from the delay period. The y-axis of the spectrum 
is in units of dB=10*log10(S). params.Fs=1000, params. 
tapers=[3 5], params.fpass=[0 params.Fs/2], params.pad=0.

Figure 8. Multitaper spectrum for a single trial LFP. Data se-
lected from the delay period. params.Fs=1000, params. 
tapers=[3 5], params.fpass=[0 100], params.pad=0.
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structure params: params .tapers=[TW K], where TW 
is the time-bandwidth product and K is the number 
of tapers. For example, if

>> params.tapers=[3 5]   ,

then the time-bandwidth product is TW = 3 and the 
number of tapers used is 5. The rule K = 2*TW – 1 sets 
the highest number of tapers that can be used while 
preserving the good time-frequency concentration of 
the data windowing available from the Slepian taper 
sequences. Fewer tapers than the limit of five can be 
employed, and Chronux will produce a flag when the 
number of tapers requested is inconsistent with the 
TW. T is the length (typically in seconds) of our data 
segment. One can also think of this value as being es-
tablished by the [number of samples in data segment] 
× 1/Fs (inverse of the sampling rate). W is the half-
bandwidth of the multitaper filter, and if we do not 
change T, we can demonstrate changes in smooth-
ing as a function of changes in the half-bandwidth, 
as shown in Figure 10. The tutorial script will prompt 
the user to try other degrees of spectral smoothing by 
entering new values for the time-bandwidth product.

To compute the spectrum over a number of trials and 
return an average thereof, we set the trialave field 
in the structure params to 1. The tutorial script will 
carry out the following steps:

>> params.trialave=1;
>>[S,f]=mtspectrumc(data,params);

>> plot_vector(S,f)   .

If trialave = 0, and the structured array data have any 
number of trials, the output S will be a matrix where 
each column is the spectrum computed from one 
trial’s neural signal.

Chronux will also calculate and plot error bars for 
multitaper spectra. Two different types of confidence 
interval estimates are available. If we set the field err 
in params to

>> params.err=[1 p], with p=0.05, and then 
execute
>>[S,f,Serr]=mtspectrumc(data,params);

>>plot_vector(S,f,[],Serr);   ,

Chronux will plot the spectrum bracketed by the 
theoretical 95% confidence limits for that estimate. 
The array Serr contains the (1 – p)% limits, with the 
lower limit in the first row and the upper limit in 
the second row of the array. In this case, the confi-
dence bounds are based on the parametric distribu-
tion for the variance of a random variable, i.e., the 
chi-square, with two degrees of freedom. If instead, 
we set the field err in params to

>> params.err=[2 p], with p=0.05   ,

the 95% confidence bounds will be derived from a 
jackknife estimate of the standard error for the sam-
ple spectra. Thus, if we run the lines of code given 
above for the theoretical confidence interval, and 
continue with

>> hold
>>p=0.05;
>>params.err=[2 p];
>>[S,f,Serr]=mtspectrumc(data,params);
>>plot(f,10*log10(Serr(1,:)),’r’);

>>plot(f,10*log10(Serr(2,:)),’r’);   ,

a figure similar to that seen in Figure 11 should be 
rendered by the tutorial script. 

Figure 10. Multitaper spectrum for a single trial LFP; data  
selected from the delay period (1 s duration, so T = 1). params.
Fs=1000, params.tapers=[3 5] (blue), params.tapers=[10 
19] (red), params.fpass=[0 100], params.pad=2

Figure 9. Multitaper spectrum for a single trial LFP; data  
selected from the delay period. params.Fs=1000, params.
tapers=[3 5], params.fpass=[0 100], params.pad=1 (blue), 
params.pad=3 (red).
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Note that for these data, the jackknife confidence 
interval (in red) is in good agreement with the so-
called theoretical interval (in blue).

As discussed in detail in other chapters, multitaper 
spectra can be calculated for point process data. As 
described in the Appendix herein, Chronux contains 
a whole set of analogous scripts for point processes 
that match those for continuous data. However, the 
suffixes of the script names carry a pt or pb, for point 
times and point binned, respectively, instead of a c, for 
continuous. For example, the script mtspectrumpt .m 
will compute the multitaper spectrum for data repre-
sented as a series of spike times. The following sec-
tion of MATLAB code will extract a data segment 
of interest from the trials, set the appropriate params 
fields, compute the spectrum for the spike data, and 
plot the results:

data=dsp1t;   % data from 1st cell
delay_times=[1 2];  % start and end time  
     of delay period
data=extractdatapt
(data,delay_times,1);  % extracts spikes within 
     delay period
params .Fs=1000;   % inverse of the spacing  
     between points on the  
     grid used for computing 
     Slepian functions
params .fpass=[0 100]; % range of frequencies 
     of interest
params .tapers=[10 19]; % tapers

params .trialave=1;  % average over trials
p=0 .05;   % p value for errors
params .err=[1 p];   % chi2 errors
[S,f,R,Serr]=mtspectrumpt
(data,params);

The output should be similar to that presented in 
Figure 12. The tutorial script should be able to pro-
duce this figure. One thing to note here is the high 
number of tapers, 19, used for computing the spec-
trum. Owing to the inherent complexity of even a 
single spike’s power spectrum, extensive smoothing 
often helps represent spike spectra. The output vari-
able R is something unique to spike spectra: It is the 
high-frequency estimate of the spike rate derived 
from the spectrum. This estimate is either made on 
a trial-by-trial basis or based on the average, depend-
ing on the setting of the parameter params .trialave. In 
Figure 12, the mean rate estimates appear as dotted 
horizontal lines.

Spectrograms
This section will illustrate how Chronux controls 
the calculation of time-frequency representations 
of neural data. Chronux can generate spectrograms 
for continuous data (like EEGs and LFPs) as well as 
point process activity (spike times and binned spike 
counts). An important component of the Chronux 
spectrogram is the sliding window, which sets the 
width of the data window (usually specified in  
seconds) and how much the window should slide 
along the time axis between samples. Within each 

Figure 11. Multitaper spectrum for LFP using all trials asso-
ciated with one target; data selected from the delay period. 
params.Fs=1000, params.tapers=[10 19], params.fpass=[0 
100], params.pad=2, params.trialave=1 (average spectrum 
shown in black), params.err=[1 .05] (blue), params.err=[2 
.05] (red).

Figure 12. Multitaper spectrum for two spikes recorded 
in area LIP; delay period activity only. Top: Cell 1, params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100], 
params.pad=0, params.trialave=1 (average, heavy line), 
params.err=[1 .05] (dashed lines), mean rate estimate (dotted 
horizontal line). Bottom: Cell 2, params.Fs=1000, params.
tapers=[10 19], params.fpass=[0 500], params.pad=0, 
params.trialave=1 (average, heavy line), params.err=[1 .05] 
(dashed lines), mean rate estimate (dotted horizontal line).
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window, multitaper spectral analysis of the data 
proceeds as it does when calculating standard spec-
tra. However, one must remember that the spectral 
analysis is restricted to the temporal window for the 
data. Thus, the number of tapers used for the spec-
trogram should reflect the time-bandwidth product 
of the window, not the dimensions of the entire data 
segment of interest. Extensive temporal overlapping 
between successive windows will tend to produce 
smoother spectrograms. The following code fragment 
from the tutorial script (lip_master_script .m) will help 
generate spectrograms for two of the LFP channels in 
our data set (Fig. 13):

movingwin=[0 .5 0 .05];  % set the moving 
     window dimensions
params .Fs=1000;   % sampling frequency
params .fpass=[0 100];  % frequencies of 
     interest
params .tapers=[5 9];  % tapers
params .trialave=1;   % average over trials
params .err=0;    % no error 
     computation

data=dlfp1t;    % data from channel 1
[S1,t,f]=mtspecgramc
(data,movingwin,params); % compute 
     spectrogram
subplot(121)
plot_matrix(S1,t,f);
xlabel([]);   % plot spectrogram
caxis([8 28]); colorbar;

data=dlfp2t;    % data from channel 2
[S2,t,f]=mtspecgramc
(data,movingwin,params);  % compute 
     spectrogram
subplot(122);
plot_matrix(S2,t,f); 
xlabel([]);   % plot spectrogram
caxis([8 28]); colorbar;

Note the use of the special Chronux plotting rou-
tine plot_matrix. Here the window is set to 500 ms 
in duration with a slide of 50 ms along the time axis 
between successive windows.

The same sets of parameters used for continuous LFP 
signals can be employed for calculating the spike 
spectrograms (Fig. 14). However, one useful modifi-
cation to make when plotting spike spectrograms is 
to normalize the spike power S by the mean firing 
rate R. For example,

data=dsp1t;    % data from 1st cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params); % compute 
     spectrogram
figure;
subplot(211);
     % plot spectrogram 
     normalized by rate
plot_matrix(S ./repmat(R,
[1 size(S,2)]),t,f);xlabel([]);
caxis([-5 6]);colorbar;

data=dsp2t;    % data from 2nd cell
[S,t,f,R]=mtspecgrampt
(data,movingwin,params);  % compute 
     spectrogram
subplot(212);
     % plot spectrogram 
     normalized by rate
plot_matrix(S ./repmat(R,
[1 size(S,2)]),t,f);
caxis([-5 6]);colorbar;

The normalized spectrograms demonstrate how the 
spike power fluctuates across the trials with respect 
to the mean rate. Here one can readily observe that, 
while there is an increase in gamma-band power in 
the spike discharge with respect to the mean rate 
during the delay period (Fig. 14, yellow-orange col-
ors, top subplot), the power in the lower-frequency 
fluctuations in the spike discharge is suppressed with 
respect to the mean rate (blue colors).

Coherence
As an example of the use of Chronux software for 
evaluating the strength of correlations between differ-
ent neural signals, we will calculate the spike-field co-
herence for pairs drawn from the three LFP channels 
and two spike channels in our monkey parietal lobe 
data set. As discussed in “Spectral Analysis for Neural 
Signals,” spike-field coherence is a frequency-domain 
representation of the similarity of dynamics between 
a spike train and the voltage fluctuations produced by 
activity in the spiking neuron’s local neural environ-

Figure 13. Time-frequency spectrograms for two LFP chan-
nels. Activity from all trials, over the entire trial (3 s) used 
for the analysis. Movingwin=[.5 .05], params.Fs=1000, 
params.tapers=[5 9], params.fpass=[0 100], params.
pad=0, params.trialave=1, params.err=0.
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ment. As before, we start by setting the values of the 
parameters carried by the structure params:

params .Fs=1000;   % sampling frequency,
     same for LFP and spike
params .fpass=[0 100];  % frequency range 
     of interest
params .tapers=[10 19];  % emphasize smoothing 
     for the spikes
params .trialave=1;   % average over trials
params .err=[1 0 .05];  % population error bars

delay_times=[1 2];  % define the delay period 
     (between 1 and 2 
     seconds)
datasp=extractdatapt
(dsp1t,delay_times,1); % extract the spike data
      from the delay period
datalfp=extractdatac
(dlfp1t,params .Fs,
delay_times);   % extract the LFP data
      from the delay period

[C,phi,S12,S1,S2,f,
zerosp,confC,phistd]=
coherencycpt
(datalfp,datasp,params); % compute the coherence

Note that the script for computing the coherency is 
coherencycpt, a function that handles the hybrid case 
mixing continuous and point process data. For the 
outputs, we have the following:

•	 	C, the magnitude of the coherency, a complex 
quantity (ranges from 0 to 1);

•	 	phi, the phase of the coherency;
•	 	S1 and S2, the spectra for the spikes and LFP  

signals, respectively;
•	 	f, the frequency grid used for the calculations;
•	 	zerosp, 1 for trials for which there was at least one 

spike, 0 for trials with no spikes;
•	 	confC, confidence level for C at (1 – p)% if 

params .err=[1 p] or params .err=[2 p]; and
•	 	phistd, theoretical or jackknife standard devia-

tion, depending on the params .err selection

These are used to calculate the confidence intervals 
for the phase of the coherency.

This code segment, which is called by the tutorial 
script, should generate a graphic similar to Figure 15. 
The top row of the figure shows the spike-field coher-
ence for spike 1 against the three LFP channels. The 
bottom row has the spike-field coherence estimates 
for spike 2 against the three LFP channels. The fig-
ure depicts the confidence level for the coherence 
estimates as a horizontal dotted line running through 
all the plots; coherence values above this level are 
significant. We see from this figure that the spikes 
and LFPs in the monkey parietal cortex showed an 
enhanced coherence during the delay period for the 
frequency range from ~25 Hz to more than 100 Hz 
for all the matchups, except LFP3, with both spikes. 
For the coherence measures involving LFP3, the co-
herence is not significant for very fast fluctuations 
(>90 Hz).

Figure 15. Spike-field coherence. Top row: coherence es-
timates between cell (spike) 1 with LFP channel 1 (left), LFP 
channel 2 (middle), and LFP channel 3 (right). Bottom row: 
coherence estimates between cell (spike) 2 with LFP channel 1 
(left), LFP channel 2 (middle), and LFP channel 3 (right). Signifi-
cance level for the coherence estimates: horizontal dotted line 
running through all plots.

Figure 14. Time-frequency spike spectrograms for two spikes 
recorded in LIP. Activity from all trials, over the entire trial  
(3 s) used for the analysis. Spectrograms are normalized by 
the mean rates of the two single units. Movingwin=[.5 .05], 
params.Fs=1000, params.tapers=[5 9], params.fpass= 
[0 100], params.pad=0, params.trialave=1, params.err=0. 



75

NoteS

© 2008 Purpura

Neural Signal Processing: tutorial 1

Using Chronux, we can also estimate the coherence 
between two spike trains. The setup of the parame-
ters for the calculation is very similar to that required 
for the hybrid script:

>> params.err=[2 p];
>> [C,phi,S12,S1,S2,f,zerosp,confC,phistd,
Cerr]=coherencypt(datasp1,datasp2,params);

Here, phistd is the jackknifed standard deviation of 
the phase, and Cerr is the (1 – p)% confidence in-
terval for the coherence. Figure 16 shows a plot of 
the spike-spike coherence, comparing the delay  
period activity (in blue) with the coherence during 
the baseline (in red).

Denoising
In Figure 17, we expand the Data Conditioning 
subgraph of the electrophysiology analysis proto-
col first introduced in Figure 1. The branch for the 
LFP data carries us through two stages of processing:  

local detrending and the testing and removal of 60 
Hz line noise. Electrophysiological recordings, both 
in the research laboratory and in clinical settings, 
are prone to contamination. 60 Hz line noise (50 Hz 
in Europe), slow drifts in baseline voltage, electrical 
transients, ECG, and breathing movements all con-
tribute different types of distortion to the recorded 
signal. Methods for removing particular waveforms, 
such as ECG and large electrical transients, have 
good solutions that are treated elsewhere (Perasan B,  

“Spectral Analysis for Neural Signals”; Mitra and 
Pesaran, 1999; Sornborger et al., 2005; Mitra and 
Bokil, 2008). We will focus here on slow fluctuations 
in electrophysiological signals and line noise.

If we add a sinusoidal voltage fluctuation to one of 

our LIP LFP recordings, the result will look some-
thing like Figure 18 (top left). Such a slow fluctua-
tion could be entirely the result of changes in the 
electrostatic charges built up around the recording 
environment. Therefore, it is noise and we should 
try to remove it. With Chronux, we use a local lin-
ear regression to detrend neural signals. The script  
locdetrend utilizes a moving window controlled by 
params to select time samples from the signal. The 
best fitting line, in a least-squares sense, for each 
sample is weighted and combined to estimate the 
slow fluctuation, which is then removed from the 
data signal.

For Figure 18 (top middle),

>> dLFP=locdetrend(LFP,[.1 .05]).

The dimensions of the sampling window are 100 ms 

Figure 16. Coherence between spikes of cell 1 and cell 2. Blue 
traces: data restricted to the delay period of each trial (solid 
line, average coherence; dashed lines, 95% jackknife confi-
dence interval for this estimate of the coherence). Red trace: 
data restricted to the baseline period of each trial. Horizontal 
line: significance level for the coherence estimates. params.
Fs=1000, params.tapers=[10 19], params.fpass=[0 100], 
params.pad=0, params.trialave=1, params.err=[2 .05].

Figure 17. Data conditioning component of electrophysiologi-
cal analysis protocol.
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in duration, with a window shift of 50 ms between 
samples. Note that the detrended signal has much less 
low-frequency fluctuation than the original signal (Fig. 
18, top left). In Figure 18 (top right), we see that the 
estimate of the slow fluctuation (blue) does a pretty  
good job of capturing the actual signal (red) that was 
added to the LFP data. However, if the sampling win-
dow parameters are not well matched to changes in 
the signal, the detrending will not be successful. 

For Figure 18 (bottom, center),

>> dLFP=locdetrend(LFP,[.5 .1]).

Window duration = 500 ms, half the sample length 
with a window shift of 100 ms. Here the estimate of 
the slow fluctuation (blue) does a poor job of captur-
ing the sinusoid (Fig. 18, red, bottom right).

Chronux accomplishes the removal of 60 Hz line 
noise by applying Thomson’s regression method for 
detecting sinusoids in signals (Thomson, 1982). This 
method does not require that the data signal have 
a uniform (white) power spectrum. The Chronux 
script rmlinesc can either remove a sinusoid of chosen 
frequency or automatically remove any harmonics 
whose power exceeds a criterion in the F-distribution 
(the F-test). Figure 19 demonstrates the application 
of the F-test option of rmlinesc.

>>no60LFP=rmlinesc(LFP,params).

Here the LFP (Fig. 19, top left) has been contaminat-
ed with the addition of a 60 Hz sinusoid. The mul-
titaper spectrum of this signal is shown in Figure 19  
(top right panel). Note the prominent 60 Hz element 
in this spectrum (broadened but well defined by the 
application of the multitaper technique). The spec-

trum of no60LFP is shown in the figure’s bottom left 
panel; the time series with the 60 Hz noise removed, 
the vector returned by rmlinesc, is shown in the bot-
tom right panel.

Appendix: Chronux Scripts
While not an exhaustive list of what is available in 
Chronux, the scripts enumerated here (discussed in 
this chapter) are often some of the most useful for 
trying first during the early phase of exploratory data 
analysis. This section describes the means for setting 
some of the more important parameters for control-
ling multitaper spectral calculations, as well as the 
basic rules for formatting input data.

Denoising
(1)  Slow variations (e.g., movements of a patient for 

EEG data)
  locdetrend.m: Loess method
(2)  50/60 Hz line noise
  rmlinesc.m
  rmlinesmovingwinc.m

Spectra and coherences (continuous processes)
(1) Fourier transforms using multiple tapers
  mtfftc.m
(2) Spectrum
  mtspectrumc.m
(3) Spectrogram
  mtspecgramc.m
(4) Coherency
  mtcoherencyc.m
(5) Coherogram
  mtcohgramc.m
Analogous scripts are available for analyzing time  

Figure 19. Application of rmlinesc.

Figure 18. Application of locdetrend. 
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series data organized in alternative formats. Point- 
process time series data can be analyzed using 
mtfftpt .m, mtspectrumpt .m, etc. Binned spike count 
data can be analyzed with mtfftb .m, mtspectrumb .m, 
etc. An additional set of scripts is available for cal-
culating the coherence between a continuous series 
and a point-process time series (coherencycpt .m, 
coherogramcpt .m, etc.), and for the coherence 
between a continuous and binned spike counts 
(coherencycpb .m, coherogramcpb .m, etc).

In a typical function call, such as

[S,f,Serr]=mtspectrumc(data,params), a structure 
params is passed to the script. This structure sets val-
ues for a number of important parameters used by 
this and many other algorithms in Chronux.

params .Fs  Sampling frequency (e.g., if data 
are sampled at 1 kHz, use 1000).

params .tapers   Number of tapers to use in spectral 
analysis specified by either passing 
a matrix of precalculated Slepian 
tapers (using the dpss function in 
MATLAB) or calculating the time-
frequency bandwidth and the num-
ber of tapers as [NW K], where K is 
the number of tapers. Default val-
ues are params.tapers=[3 5].  

params .pad  Amount of zero-padding for the 
FFT routines utilized in the multi-
taper spectral analysis algorithms. If 
pad = –1, no padding; if pad = 0, 
the FFT is padded to 512 points; if 
pad = 1, the FFT is padded to 1024 
points, pad = 2, padding is 2048 
points, etc. For a spectrum with a 
dense frequency grid, use more pad-
ding.

params .fpass  Frequency range of interest. As a 
default, [0 Fs/2] will allow from DC 
up to the Nyquist limit of the sam-
pling rate.

params .err  Controls error computation. For 
err=[1 p], so-called theoretical er-
ror bars at significance level p are 
generated and placed in the output 
Serr; err=[2 p] for jackknife error 
bars; err=[0 p] or err=0 for no error 
bars (make sure that Serr is not re-
quested in the output in this case).

params .trialavg  If 1, average over trials/channels; if 
set to 0 (default), no averaging.

Local regression and likelihood

(1) Regression and likelihood
  locfit.m
(2) Plotting the fit
  lfplot.m 
(3) Plotting local confidence bands
  lfband.m
(4) Plotting global confidence bands 
  scb.m

Data format
(1) Continuous/binned spike count data
   Matrices with dimensions: time (rows) ×  

trials/channels (columns)
   Example: 1000 × 10 matrix is interpreted as 

1000 time-point samples for 10 trials from 1 
channel or 1 trial from 10 channels. If mul-
tiple trials and channels are used, then add 
more columns to the matrix for each addi-
tional trial and channel.

(2) Spike times
   Structured array with dimension equal to the 

number of trials/channels.
   Example:  data(1).times=[0.3 0.35 0.42 0.6]
    data(2).times=[0.2 0.22 0.35]
   Chronux interprets data as two trials/chan-

nels: four spikes collected at the times (in 
seconds) listed in the bracket for the first 
trial/channel, and three spikes collected in 
the second trial/channel.

Supported third-party data formats
NeuroExplorer (.NEX)
Plexon (both .PLX and .DDT file formats)
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Introduction
Statistical models are used to explicitly propose a 
relationship between neural spiking activity and 
other measured signals, including biological stimuli 
and behavioral covariates. Generally speaking, these 
models can be useful for several tasks: summarizing 
spike train data, describing structure or patterns in 
the data, making inferences about the neural system, 
and estimating signals or dynamic properties of the 
firing activity. Neural models of spike train activity 
can also include biological models (e.g., Hodgkin-
Huxley–type neurons or networks) that more con-
cretely depict the mechanisms by which these rela-
tionships arise.

This tutorial goes through the basic steps for con-
structing and evaluating a statistical model for a spik-
ing neuron. In particular, we will use generalized lin-
ear models (GLMs) to construct an inhomogeneous 
Poisson model of a place cell in the CA1 region of rat 
hippocampus. The GLM framework provides a flex-
ible class of conditional intensity models that are eas-
ily fit using maximum likelihood methods and can be 
easily implemented in many standard mathematical 
and statistical packages, such as Matlab.

As we perform this analysis, here are some focus 
questions to keep in mind: First, what constitutes a 
statistical model for spike train data? Second, how 
do we specify a particular statistical model for a par-
ticular neural system? Finally, once a model class is 
specified, how can we choose the model parameters 
that are most in line with an observed spike train? 
We can answer the first question immediately: The 
statistical model specifies the probability of observing 
some number of spikes in any time interval, given 
(i.e., conditioned on) related covariates such as stim-
ulus values or the spiking history. We will explore the 
answers to the other questions below.

Experimental Setup
In this tutorial, we will analyze spike train data re-
corded from a CA1 hippocampal neuron in a Long–
Evans rat freely foraging in an open circular environ-
ment (70 cm in diameter with walls 30 cm high and 
a fixed visual cue). Both place-cell microelectrode 
array recordings and position data were captured 
from the animal. The neural activity was sampled at 
1000 Hz, and the rat’s position was sampled at 30 Hz. 
These experimental methods have been previously 
reported in detail (Brown et al., 1998).

Constructing a statistical model
The first step in performing statistical analysis of this 
spiking activity is to visualize the data in a way that 

clarifies the relationship between the spiking activity 
and the rat’s position.

Plotting raw data
To plot the raw data, we must first load in the data 
from a Matlab-readable file (e.g., .csv, .txt, .mat)  
using the “load” command. We can see what vari-
ables lie in the data set that we loaded by typing the  
command “who,” as shown below. You may type “help 
load” to see how to load files of different formats.

>> load glm_data.mat

>> who

Your variables are listed in Table 1.

table 1. Variables contained in glmdata.mat

spike_times Time stamps on spike events

x_at_spike_times Animal position (x) at  
corresponding times stamps

y_at_spike_times Animal position (y) at  
corresponding times stamps

T Time

spikes_binned spike data in 33 ms bins

xN Normalized position (x)

yN Normalized position (y)

vxN Normalized velocity (v
x
)

vyN Normalized velocity (v
y
)

R Movement speed = sqrt(v
x
2+ v

y
2)

phi Movement direction = atan2(v
y
, v

x
) 

Use Matlab to visualize the spiking activity as a 
function of time and then as a function of the ani-
mal’s position.

Using the “plot” command, you should be able to 
generate the plot shown in Figure 1, which shows the 
rat’s trajectory (blue) over 23 minutes and the spikes 
(red) for the single neuron. Notice how this particu-
lar neuron fires more when the rat is in the bottom, 
slightly left section of the circular environment.

Choosing a model form
The model is a function that specifies the probability 
of observing Δ Nk spikes in the kth interval of length 
Δ milliseconds. It is premised on parameters of the 
model (θ) and values of other signals of interest, i.e., 
covariates (x(1), x(2),…, x(N)), that are postulated to 
affect the current probability of spiking, such as our 
stimulus and the occurrence of previous spikes:
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Let’s explore one way to specify this probability. First, 
define the function λ

k
 that can be used to calculate 

the instantaneous probability that a spike will occur. 
We can introduce parameters and covariates into the 
model by defining λ

k
 in terms of θ and x(1) ,…, x(N).

For this exercise, we will assume that the bin size 
is set small enough that the covariates are approxi-
mately constant within the bin, so that λ

k
 will be 

approximately constant over each bin. We assume 
the number of spikes that arrive in the kth bin is 
distributed as a Poisson distribution with mean and 
variance λ

k
Δ.

To make parameter estimation easier, we restrict the 
relationship between λ

k
, θ, and x(i) to follow the GLM 

framework for a Poisson distribution (Brillinger et 
al., 1988; Truccolo et al., 2005). This means simply 
the following:

,

where θ = {β
0
, α

1
, α

2
, … , α

J
}, x(k) = {x1(k), x2(k), … ,  

xN(k)} and {f
1
, f

2
, …, f

J
} is a set of general functions 

of the covariates. Note that the log of λ
k
 is linear in 

θ, and that the functions can be arbitrary, nonlinear 
functions. This makes the GLM model class quite 
broad. In addition, if different types of covariates (e.g.,  
extrinsic vs intrinsic) independently impact the  

firing probability, then the GLM can model these 
separately as follows:

The GLM is an extension of the multiple linear  
regression model in which the variable being predict-
ed (in this case, spike times) need not be Gaussian 
(McCullagh and Nelder, 1989). GLM provides an 
efficient computational scheme for model parameter 
estimation and a likelihood framework in which to 
conduct statistical inferences based on the estimated 
model (Brown et al., 2003).

Pick a set of covariates (remember, this can  
include any function of the variables above), and 
write an equation that linearly relates log(λ

k
) to  

your covariates.

Writing down the data likelihood
The data likelihood is simply the probability of  
observing the specific sequence of spike counts, con-
ditioned on selected values of the parameters, and the 
actual values of the other covariates: L(θ = Pr(ΔN

1
, 

… , Δ N
k
 | x(1), … , x(N), θ), where the observed data 

are held fixed.

Write down an equation for L(θ).

In order to derive the likelihood function, we consid-
er a case where the time bin Δ is so small that only 0 
or 1 spike can occur (e.g., Δ = 1 ms). The spike train 
then forms a sequence of conditionally indepen-
dent Bernoulli trials, with the probability of a spike 
in the kth time interval given by Pr(spike in (kΔ, 
(k + 1)Δ]|x(1),…, x(n)θ) ≈ λ

k
Δ. This yields the follow-

ing joint probability:

Pr(ΔN1, … , ΔNk | x(1), … , x(N), θ ) ≈ Π [λiΔ]     [1−λiΔ]
ΔNi 1 – ΔNi

i = 1

k

For small Δ, we get the result that [1
j
] ≈ e

j
 and 

log([
i
][1

i
]-1) ≈ log(

i
); therefore,

Pr(ΔN1, … , ΔNk | x(1), … , x(N), θ ) ≈ Π [    ]  [e – λiΔ].
λiΔ

1−λiΔ

ΔNi

i = 1

k

Then, taking the log of both sides results in the fol-
lowing data likelihood function:

Figure 1. Rat’s trajectory (blue) and spikes (red) for the single 
neuron firing.

.
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More details on deriving the data likelihood function 
can be found in Brown et al., 2003.

Choosing model parameters to 
maximize the data likelihood
We would now like to choose model parameters that 
most likely would have generated the observed data. 
This is accomplished by choosing the parameter esti-
mate θ̂ that maximizes the data likelihood:

  θ̂ = arg max L(θ)

Our problem of estimating model parameters has  
become a question of optimizing a function L(θ) over 
a possibly unconstrained space θ. Several methods  
can be used to approach optimization. Because 
we chose models built on the GLM framework, 
this optimization is computationally simplified  
(McCullagh and Nelder, 1989).

 Use the Matlab function glmfit to find the param-
eters of your model that maximize L(θ).

>> b = glmfit([covariate1 covariate2 …],spikes_

binned,’poisson’);

For small-parameter vectors, it is often useful to plot 
L(θ) as a function of θ around the parameter values 
returned by glmfit in order to confirm that glmfit in-
deed maximized the data likelihood. The shape of 
the likelihood around the maximum likelihood esti-
mate determines the uncertainty about the estimates 
from the data.

Visualizing the model
 Using the equation for λ you wrote down in  
step 3, plot the intensity as a function of your cova-
riates. Compare this graph with a plot of the signal 
values at which spikes occurred. This will visually 
confirm the plausibility of the model for explaining  
the relationship between the observed spiking and 
your covariates.

The script glm_part1.m is set up to fit and visualize  
a GLM for the spiking activity as a function of the 
rat’s position.

>> glm_part1

This outputs a plot of the raw spiking data (Fig. 1) 
and another plot of the linear model of spiking rate 
(covariates = [xN yN]), both as a function of the ani-
mal’s position (Fig. 2).

Notice that the linear model in Figure 2 cannot cap-
ture the phenomenon seen in the raw data (Fig. 1), 

namely that in the lower, slightly lefthand side of 
the circle, the spiking decreases. Thus, a quadratic or 
Gaussian model may be more appropriate for captur-
ing the place-field structure shown in Figure 1.

 Modify the GLM in the script glm_part1 to include 
other covariates and functions of covariates. Modify 
line 20 by including your new covariates in the model  
fit, and modify line 30 by writing in the equation 
for λ. Can you think of a GLM that can capture a 
Gaussian-shaped place-field structure?

The script glm_part2.m is set up to visualize mod-
els of spiking as a function of velocity.

>> glm_part2

Figure 2. The linear model of spiking rate as a function of the 
animal’s position.

Figure 3. The Gaussian model of spiking rate as a function of 
the animal’s position.



84

NoteS

© 2008 Eden

Currently, this script outputs occupancy-normalized 
histograms of spiking simply as a function of the  
velocity covariates, as shown in Figure 4. Examining 
these histograms can provide insight into possible 
spiking models.

 Modify the script glm_part2 to fit GLM models to 
each of these variables, and then plot the GLM fits 
along with the occupancy-normalized histograms. 
What do these model fits suggest about the relation-
ship between spiking and velocity?

Evaluating a statistical model
Now that we’ve written down a statistical model that 
explicitly relates neural signals with covariates such 
as stimulus values, and used maximum likelihood to 
choose values for parameters that were most consis-
tent with the observed data, what comes next? In 
this section, we will investigate how to evaluate our 
model both in relative terms (how well it does com-
pared with other models) and in absolute terms (how 
well it does in explaining the given data).

Here are some focus questions to consider as we  
attempt to evaluate the statistical models we just 
constructed: First, how precise are the model  
parameters that we just fit? Is it possible to simplify 
the model and still maintain accuracy? How do we 
know whether we have too many model param-
eters, and why might this be a bad thing? Can we 
quan-titatively determine which of the models we  
constructed better fits the data and whether any of 
the models describes the data well enough to make 
useful inferences about the underlying properties of 
the neural system?

We will see that the data likelihood can also be used 
to determine precision in the choice of parameter, 
based on the Fisher information. We can use the data 
likelihood to provide confidence intervals for our pa-
rameters and eliminate parameters that are not dis-
tinguishable from zero. With too many parameters, a 
model may not generalize well to new data sets. The 
Akaike Information Criterion (AIC) and other mea-
sures quantify the tradeoff between fitting the data 
better and increasing the number of parameters. The  
Kolmogorov–Smirnov (KS) plot can help visualize how 
well the model explains the structure in all the data.

Determining the uncertainty of the 
parameter estimates
We can obtain confidence intervals around the  
parameter estimates based on the Fisher information. 
The observed Fisher information matrix is defined as 
the second partial derivative (the Hessian) of the log 
likelihood function log f(x|θ) with respect to the 
individual parameters, evaluated at the following 
maximum likelihood estimate:

.

This quantity provides a sense for the precision of 
our model parameters. Recall that the ML estimate 

of θ was chosen so that . If this 

derivative gradually goes to zero at around θ
ML

, then 
presumably, the neighboring values of θ 

ML  would 
have been almost as good and might have been cho-
sen depending on the accuracy of the optimiza- 
tion procedure.

Revisit the GLM models that you constructed in 
Part 1 of this tutorial. Load the data.

>> load glm_data.mat

Now call glmfit() in the following way to return  
additional statistics about the model fit:

[b,dev,stats] = glmfit ( arguments of the func-
tion call );

Generate a number of possible models with this com-
mand, including one with quadratic terms in x and y 
position in relation to the animal.

Figure 4. Occupancy-normalized histograms of spiking as a 
function of the velocity covariates.
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Examine the confidence intervals computed for 
each parameter of two models based on the square 
root of the inverse of the observed Fisher infor-
mation (σ) given in the variable stats.se. Use  
errorbar() to plot the parameters b ± 2σ, and  
determine which parameters are statistically different 
from zero.

Figure 5, below, plots the confidence intervals for the 
quadratic model with six parameters ([xN yN xN.^2 
yN.^2 xN.*yN]) . Note that the sixth parameter has 
a confidence interval that includes 0; thus, the pa-
rameter is not statistically different from zero.

Examine the corresponding p value assigned to 
each parameter in stats.p . Which parameters have 
significant p values?

The corresponding p values for the six parameters 
in the quadratic model are all smaller than 10^–4  
except for the sixth parameter, which is 0.8740.

Constructing confidence intervals about 
your model conditional intensity
In the previous section, we computed the uncertainty 
about the parameter estimates. Now, we can propa-
gate this uncertainty into the intensity model. This 
gives us a sense of how certain we can be about the 
conditional intensity as a function of the covariates.

Use the Matlab function glmval to calculate con-
fidence intervals about the conditional intensity.

>> [b, dev, stats] = glmfit([xN 
xN.^2],spikes_binned,’poisson’);
>> [yhat,dylo,dyhi] = glmval(b,[-1:.01:1; 
[-1:.01:1].^2]’,’log’,stats);
>> errorbar(-1:.01:1,yhat,dylo,dyhi);

If you build the above model, you will get the  
uncertainty into the intensity model shown in  
Figure 6, below.

Characterizing the relative goodness-
of-fit among competing models
Now we have a sense of which parameters contrib-
uted to the model in explaining the relationship 
between covariates and the observed neural activ-
ity. But how do we compare the quality of compet-
ing models, especially when they may have different 
numbers of parameters?

One answer is to examine the deviance of each  
model, defined as –2 times the log of the data likelihood:

deviance = -2log f(x|θ)

This quantity grows smaller as the data become  
more likely under a particular model. It is a general-
ization of the mean-squared error under a Gaussian 
linear model.

We would also like to penalize our error for having 
too many parameters. Intuitively, having too many 
parameters may restrict the ability to allow the model 
to generalize to (predict) new data. The AIC balances  
deviance against the number of parameters P: 

AIC = -2log f(x|θ)+2P

Compare the AIC between two models. For exam-
ple, consider the GLM models that are linear versus 
quadratic in relation to the animal’s position.

Figure 5. Confidence intervals for parameters of  
quadratic model.

Figure 6. Uncertainty propagated into the intensity model for 
xN-quadratic model.
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The AIC for the linear model where covariates in-
clude [xN yN] is 1.6175e + 004, while the AIC for 
the quadratic model [xN yN xN.^2 yN.^2 xN.*yN] 
is 1.2545e + 004. These criteria indicate that the 
quadratic model is considerably better than the  
linear model.

 How can the AIC be improved for the GLM qua-
dratic model of the animal’s position?

We saw above that the cross-term between xN and 
yN has an associated parameter that is close to zero 
and therefore does not contribute significantly to the 
model. If we eliminate this parameter and build a 
new quadratic model with covariates [xN yN xN.^2 
yN.^2], we get an AIC of 1.2543e + 004, which 
is slightly less than that of the previous quadratic 
model. This suggests that the model without the 
quadratic cross-term provides a more parsimonious 
description of the data.

 How is the AIC of a given model affected by elim-
inating statistically significant parameters?

If we remove the first parameter of the linear model 
(xN) and build a GLM model with covariate yN, we 
get an AIC of 1.6315e + 004, which is higher than 
that of the full linear model. In general, removing  
statistically significant parameters significantly  
increases the AIC.

Characterizing the goodness-of-fit 
between data and model
The AIC allowed us to compare alternative models. 
But how good is the best model in explaining the 
statistical structure in the data? The KS statistic pro-
vides one absolute measure.

Let’s briefly revisit the time rescaling theorem. This 
theorem states that, with the correct conditional 
intensity function, interspike intervals (ISIs) can 
be transformed into an independent, identically dis-
tributed, exponential set of random variables. This 
transforms any point process into a unit rate Pois-
son process. Consequently, if we did have the cor-
rect conditional intensity function, the cumulative 
distribution on rescaled ISIs would match that of an 
exponential distribution with λ = 1.

To form the KS statistic, first rescale the empirical ISIs 
with your model conditional intensity function. Com-
pare the cumulative distribution of these rescaled ISIs 
to that of an exponential distribution with λ = 1. The 
KS statistic is the maximum of the absolute value of 
the difference between these cumulative distributions.

 Open glm_part1_ks.m and adjust the GLM mod-
els to your liking. Now scroll down to the KS Plot 
section of the code. Edit the code to correctly com-
pute your model intensity at each point in time. Run-
ning the code will now output the KS statistic and 
plot, which includes the 95% confidence interval. 
Compare the KS statistic between two competing 
models. Which one does better? Does that model do 
a good job at explaining all the statistical structure 
in the data?

Figure 7 below shows the KS plots of the linear and 
full quadratic model with cross-term. Note that the 
quadratic model has better absolute goodness-of-fit 
to data. The fact that the KS plot for the quadratic 
model still does not fit entirely inside the 95% con-
fidence intervals suggests that some statistical struc-
ture remains that this model fails to capture. 

 How could this statistical model be further  
improved? What other variables might be related to 
the spiking activity of this neuron? Is there a single 
correct model for these data?
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