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1. Network flow response to single vessel modulation

Consider a vascular network with N nodes and E edges. We denote the conductance of edge a between node i and j as g, and
define an incident vector that represents the direction from node i to node j as:

(ba)k = ik — G- (1]
Stacking all incident vectors gives the incident matrix B € R™V*¥  where the a-th column is the incident vector for edge a.

The weighted graph Laplacian matrix is then L = BGB”, where Gap = 6apga is the diagonal conductance matrix. Denote the
(E)

pressure at node i as ¢; and the injected flow into node i as g;~’, conservation of flow then gives:

Lo = q®. 2]

Under a fixed-flow boundary condition, the weighted graph Laplacian matrix is positive semi-definite. If the entire network is
single-connected, then L has one zero eigenvalue and all other eigenvalues are strictly positive. Denoting the Moore-Penrose
pseudoinverse of L as L™, the pressure at each node can be computed as ¢; = Lilq(E).

Consider external flow I and —1I, which is injected to nodes ¢ and j, respectively, connected by edge a. Thus q(E ) = Ib,,.
The effective network resistance across edge « is then given by

b T ~1q(E)
Ra:(pl ]¢J :ba(qu ):bgL_lba [3}

and the induced flow in branch 3 between node m and n, I3 is given by
I = gablid = gsbs L™ bal = f11, [4]
where f2 is the fractional flow change in edge 3 in response to flow injection around edge o = (4,7) and therefore | 18 | € [0,1].
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A. Self-modulation. Consider an edge a between two internal nodes (7, j) with baseline flow Q. given by:

Qo = ga(ds = 6;) = gaba L7'q". [5]
If the conductance of this edge is increased by ¢, the weighted graph Laplacian L gets a rank-1 modification, i.e.,
L' = L+ ebabl [6]

and the pseudoinverse of L’ can be calculated using the Sherman-Morrison formula:

L 'b bl !
L/ -1 — L—l _ aYa 7
() et 7
The resulting flow Q. is then given by:
_ 14¢€
"~ (ga T (L) g — P 3
Qo = (9a +)ba (L) "q Tre. e (8]
where €, = €/ga € [—1,00) is the fractional conductance changes in edge . The normalized flow change is then

Qo L1t+éafs™

As the effective network resistance R, is non-greater than the edge resistance ro = g3, f& = gaRa € [0,1]. Therefore, single

vessel dilation always increases its own flow. Noting that é, = —1 corresponds to the case when the segment is completely
blocked, we find AQ, = —Q. as expected. However, neither single vessel dilation nor restriction could reverse the flow direction
in itself.

If we neglect the dependence of effective viscosity on vessel radius p, edge conductance g o p* and éo = [(po + 1)* — 1],
where pa = Apa/pa is the normalized radius change. Equation 9 give:

AQa (1_fg)[([)a+1)4_ 1}

= . 10
Qo T fallpa + D7 1] o
For small radius change p., we have:
AQ ay Apa Apa
= g1 - fO =k . 11
0 (1-fa) o Q= [11]

In other words, network constraints reduce the linear response of flow to radius from 4, for a pipe with fixed endpoint pressures,
to 4(1 — f&), for a pipe in an interconnected network (Figure S1A). The linear response of flow to radius changes is related to
f& through

fo =1 ko/A. 12

Similarly, flow speed vy = Qa/(wpi), the speed after radius modulation, v’, is related to the original speed through:

= N 2
o, = Y F e, (po +1) Vo, [13]
1+ éafs L+ f&[(pa +1)* = 1]

or
Ave (po +1)?
va 14 f&(pa+1)* —1]

—1. [14]

The right hand side of the equation has roots at po = 0,—2,—1+ /—1+4+1/f&. For f§ € [0.5,1], none of the roots are
positive, and therefore increasing the radius always decreases the flow speed. For f§ € [0,0.5), =1+ /—14+1/f& > 0 and

therefore a small dilation po € (0,—14 /—1+ 1/f&] could increase flow speed, while a larger dilation decreases the flow speed
(Figure S1B). Similarly, for small radius change pa,

AQ a Apa Apa
=2(1 —2f5) = =k, , 15
o =20 -2 ==t [15]
and
a_1 ke
fa=5-7- (16]
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B. Effect on the neighbors. We now consider the effect of dilation of edge a on edge 8 between internal nodes m and n.
Through a similar derivation to that above, we have:

B
Q=) = (1 %0 17
and 5
_ éafa

Therefore, the change of flow in the neighboring vessels is proportional to the basal flow rate in the controlling vessel and
depends on the network structure (f2 and f&) and the fractional conductance change é,. Therefore, for effective regulation of
blood flow, the controlling edge should have a high flow rate. The spatial extent of the significantly affected vessel segments
depends on the decay of f2 over Euclidean or geodesic distance. The change of flow in edge 3 is related to flow change in the
controlling edge a through

AQs _ &

AQa 11— f&’
which is completely determined by the network structure, independent of the magnitude of conductance change é,. As AQ, is
distributed across the network, |AQs/AQa| < 1, and conservation of flow gives |f#| <1 — f2. Similarly, for two edge 8 and ~
responding to the controlling edge «, their flow responses are related by:

[19]

AQs _ fR
= 20]
AQ, I
which is also independent of é,.
We now consider flow control in nearest neighbors. As f§ = ggbgL_lba, Equation 18 can be expressed as:
AQs = Lo T (b, 21]

T ltéfs’

where (—bs) can be viewed as a unit-current dipole injection with a negative pole at node i and a positive pole at node j.
Denote the pressure induced by this dipole as w = L™*(—b,). We have

b5 L (—ba) = byw = wm — wn, [22]
and therefore R
AQs = T (Wi = wn)Qar 23]
14 énf&
For vasodilation, é, > 0, and therefore
sgn(AQg) = sgn[(wm — wn)Qal, [24]

where sgn(-) is the sign function. Suppose Qo > 0, i.e., the basal flow in edge « is from node ¢ to node j. If edge 3 is directly
connected to edge a at node j, i.e., m = j and n # i, then

sgn(AQg) = sgn(wm — wy). [25]

As w is the pressure induced by a dipole across edge «;, it represents the discretized version of the solution to a Poisson equation.
By the maximum principle of the Poisson equation, the maximum/minimum value can only appear on the domain boundary,
i.e., nodes ¢ and j. Therefore, for any node n other than j, we have w; > w, and thus

AQg > 0. [26]

Consequently, if edge S is directly downstream of edge «, i.e., @z > 0, then increasing conductance of o always increases
flow in 8. Conversely, if the basal flow direction in edge 3 is from node n to node m (or equivalently, node j), i.e., @z < 0,
increasing conductance in edge o decreases flow in 8. Similarly, increasing conductance in an edge will increase flow in its
nearest upstream neighbor and decrease flow in its nearest parallel neighbor.
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2. Analysis of tracking-based hemodynamic measurement approach

A. Predictive model enables high-speed dense tracking. The accuracy of hemodynamic measurements critically depends on
correctly matching blood cells detected at adjacent time points. These labeled blood cells, imaged using low numerical aperture
optics, exhibit limited distinguishable intensity features. Matching these nearly identical particles across frames relays on
solving the linear assignment matrix C;; that minimizes the total error between the predicted position #; (¢t + 1), according to
a motion model, and the observed position in the next time point, x;¢4+1. Specifically, C;; can be found by solving

arg minc” Z Cijd[i‘i,t(t + 1), .Iij,t+1], [27]
i

where d[Z;+(t + 1), x;,++1] measures the distance between two points, and Euclidean distance is commonly used. The validity of
this approach depends on an assumption that the prediction error is smaller than the average minimal distance (d) between
particles:

d[Zi,e(t + 1), z5,041] < (d). 28]

In 1D, the motion model estimates the velocity v;; for the cell at x;; and predicts its position at time point ¢ + 1

- U;
Zip(t+1)=xi¢ + ot

[29]

)
Vacq

where vqc¢q is the acquisition frequency (imaging frame rate) and @; ¢ is the predicted velocity. Consider cell ¢ passing through a
vessel segment E. Its true speed, v; ¢, through the segment between time ¢ and ¢ + 1 can be expressed as

Vit = VE + 0Vit, (30]

where vg is the average flow velocity in segment E, and dv; ; represents the potential spatial and temporal variations. Let €,

be the normalized prediction error:
Vit — Vit
€n = | —|.

31
o 31]

Equation 28 then gives the maximum velocity that can be reliably measured by tracking:
Vmaz < 2299 (d). 32]

€n

The widely used Crocker—Grier algorithm was developed for tracking the diffusion of colloidal particles, whose expected
displacement between frames is 0. This correspond to 7;; = 0 and €, = 1. In the case of blood flow in microcirculation
networks, the motions of the blood cells are directed along the vessel. For fast moving blood cells, the inter-frame displacement
could be comparable to the (d), and therefore strongly degrade the performance of the Crocker-Grier algorithm. However, for
such directed movements, if the average edge velocity vg is known, by setting ¥; + = vg, the normalized prediction error can be
reduced to |dvi ¢ /vE|. Therefore, assuming a 33% coefficient of variation in flow velocity, knowing the average flow speed in
each edge enables reliable tracking of cells moving at a speed 3-times higher under the same experimental condition.

B. Tracer density variation in a multiscale network. When applying particle tracking to study hemodynamics, tracer density is
a key experimental parameter that should be carefully chosen to suit the physiological questions of interest. Consider particles
with radius ro and number density n circulating in the bloodstream. The average spacing between these particles in free
space can be estimated as dfs = (1/ n)l/ 3. However, the average minimum distance (d) between particles in the brain vascular
network varies significantly as cells travel from major vessels of a diameter over 100 pm to capillaries with a 4 pm caliber.

B.1. Average minimum distance between non-interacting particles in a cylinder. Consider a cylinder of length L (L >> R) and radius R
containing N uniformly distributed non-interacting particles. If dfs >> R, particles are essentially distributed along a line,
and therefore

(dss)® = nR?L, [33]

where [ is the average distance between particles along the axial direction of the cylinder. In this case, the probability of finding
a particle near the origin (z € [—dz/2,dxz/2]) and (N — 1) particles at least distance |z| away from the origin is given by:

N-1 N—-1
ey 2\ a2\ 1 (el
Pn(z)dx =N 7 (1 T ) = (1 N ~ T exp 2 7 dz, [34]

where we have used [ = L/N and taken the thermal dynamic limit. The average minimum distance between particles is then

(d) = /_oo @exp (—2'?') dx = %, [35]
=2 (55) &
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If dys << R, the geometry of the cylinder can be ignored. For non-interacting particles in 3D free space, the average

minimum distance (d) is given by:
(dy 1 (1)(1 1 (1)(3)1/3
=-r(z)%=zr(2)(2) " ~o0.556 37
drs 3 \3)a 3 \3)\ur ’ 137

B.2. Monte Carlo simulation of hard spheres in a cylinder. To characterize this variation, we performed Monte Carlo simulations
of hard sphere packing in a cylinder. These simulations allowed us to compute how (d) depends on vessel geometry and
tracer density. For dys > 2R, where R is the vessel radius, the scaling relation closely follows the 1D analytical model for
non-interacting particles (Equation 36). For dys < 2R, the normalized spacing (d)/dss is bounded between 0.56 (Equation 37)
and about 0.7 (Figure S2A).

where a is the Wigner-Seitz radius.

B.3. Estimates of average cell spacing (d). Let H be the hematocrit, v be the blood cell labeling ratio, and ro be the blood cell
radius. The average distance between cells in 3D free space is

4 e
de = (3’}/H> B [38}

For H = 0.45, r = 2 um and a labeling fraction v of 10%, dss is 9.1 pm. Labeling 0.1% of the cell increase dys to 42.1 pm.
These estimations, combined with Equation 36 and Equation 37, suggest that as RBCs traverse the vascular network, their
average minimum distance (d) can vary by orders of magnitude. The narrowest spacing occurs in the fastest-flowing segments
(Figure S2B). As a result, at a 70 Hz acquisition rate and 10% labeling fraction, the conventional tracking algorithm fails to
reliably measure blood flow velocity in most arteries and arterioles, where flow speeds readily exceed 1 mm/s (Figure S2C).
This highlights the need to incorporate motion-model-based approaches for blood cell tracking.

C. Tracer density limits measurements frequency. While large spacing between tracers simplifies computational analysis, it also
reduces particle detection frequency. The measurement frequency, v,,, is given by:

v
(d)’
where v is the flow speed in the vessel. Low detection frequency can hinder systematic measurement of transient hemodynamics
in the microvessels. Importantly, this frequency is limited by the minimum flow speed in the vessels of interest and is

independent of the imaging acquisition rate (Figure S2D). Thus, the maximum target flow velocity vmae, and the minimum
target measurement frequency vy collectively determine the tracer density in the experiment.

VUm =

[39]
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3. Computational methods

A. Cortical vascular network reconstruction. We utilized a subset of whole mouse brain vascular connectomes in our analysis.
These connectomes are spatial graph representations of the entire mouse brain vascular network, containing vessel centerlines at
1 pm resolution, microvessel radius estimated at 0.25 nym resolution, and the connectivity data between over six million branches.
The reconstruction procedure is detailed in (1). For this study, we selected a (1072 um)® volume of the vascular network
near the somatosensory cortex and manually proofread vessel connectivity, with particular attention to pial vessels. We then
traced the large pial vessels back to major surface vessels with known anatomical identities in multiscale downsampled whole
brain image volumes and labeled them as arterioles or venules. These labels were computationally propagated to connected
branches with radii greater than 3.5 pnm, while branches with radii smaller than 3.5 pm were defined as capillaries. Using this
semi-automated procedure, we classified 18,973 vessel branches into capillaries, arterioles, and venules. A three-dimensional
reconstruction at 1 pm resolution of this network is shown in Figure S5. For the resistor network analysis, we constructed an
undirected graph from the spatial graph after pruning all microvessel branches with unconnected endpoints. The resulting
graph contains 14,091 capillary branches, 162 arterial branches, and 657 venous branches.

B. Confocal light field datasets. Our analyses used five datasets from the red blood cell tracking experiments previously
described(2). Each dataset consisted of 1,258 3D volumetric image stacks acquired at 70 Hz, with each stack containing
512 x 512 x 100 voxels at a voxel resolution of 2 x 2 x 2.5 um?>.

C. Spatial graph reconstruction. We computed the structural image of the vascular in each experiment by taking the maximum
value of each voxel over all 1,258 volumes. The resulting image volumes were cropped and masked to clean up the out-of-focus
light field reconstruction artifacts. We then removed shot noise using a 3D median filter, stretched image contrast, resized the
image to 2 pm isotropic voxel size, and computed vessel segmentation using a combination of filters and adaptive thresholding(1).
We then stitched both the image and vessel segmentation using the transnational displacement vector computed from pair-wise
intensity-based 3D registration. Using itk-snap(3), we manually refined image segmentation and further labeled arterioles and
venules based on pial vascular anatomy and the recorded flow directions. This led to a labeled array where arterioles, venules,
and capillaries are presented with different integers. Using this labeled array, we constructed two masks, one for arterioles and
capillaries, and the other for venules and capillaries. For each mask, we filled the small holes and removed small connected
components before computing the skeleton and the distance transform field. Using the distance transform field, we refined the
positions of skeleton voxels. The skeletons from both masks were merged to construct the spatial graph and further iteratively
refined by removing short unconnected branches and small loops(1).

D. Cell detection. To remove low-frequency, out-of-focus light field reconstruction artifacts, we apply a Difference of Gaussian
(DoG) filter to each 3D volume. Since brain vasculature typically only accounts for less than 5% of the volume and only about
10% of the RBCs were labeled in the experiment, we assume that 95% of the voxels represent background and computed their
mean fpg and standard deviation op4. Local intensity maxima are then detected across the filtered volume with a minimum
inter-peak distance of 6 pm and intensity thresholds set to at least 5 oy, above pp,. To further eliminate noise-induced
detections, the identified peaks are sorted by intensity in descending order, and the intensity differences between the consecutive
peaks are computed. This difference sequence is smoothed using a moving average filter with a window size of 10. We
then retain only peaks for which the smoothed intensity difference remains above a threshold of 1, based on the assumption
that noise-induced peaks would cluster around similar intensity levels. For each remaining valid peak, we compute a set of
intensity features from the original (unfiltered volume). These features include the peak intensity, signal-to-noise ratio based on
local neighborhood statistics, and intensity-weighted center-of-mass position. Additionally, the local spatial intensity profile
around each peak is characterized by computing the covariance matrix of voxel intensity within the neighborhood, followed by
eigenvalue decomposition to extract the shape and orientation.

E. Network flow tracker (NFT). For each dataset, we first reconstructed the local vascular network within the imaged volume.
Cell detections located far from the reconstructed mask were removed, and the remaining detections were assigned to their
nearest skeleton voxel. Cells appearing stationary were identified and labeled as “tracked”. The remaining detections were used
to generate detection maps for each edge in the spatial graph. An iterative, spatiotemporal-correlation-based algorithm was
applied to estimate the average flow velocity along each edge. In parallel, a graph-constrained tracking algorithm estimated
velocity in microvessels where the flow is slow. These two independent velocity estimates were then combined to initialize the
graph-constrained predictive tracking algorithm, which linked cells across frames by minimizing position prediction error and
intensity feature discrepancy. The resulting trajectories were used to iteratively update the motion model and improve tracking
accuracy. A detailed description of each step is provided in the following sections.

E.1. Voxel-to-Skeleton Mapping. We implemented a custom nearest—skeleton assignment procedure to map every voxel in the
imaged volume to its closest skeleton voxel while minimizing erroneous arteriole/venule cross assignments in regions where
large vessels run in close apposition. To avoid a single global distance transform that can bias the assignment of small vessels
bordering a large vessel of another class, we computed two 3D Euclidean distance transforms (EDTs) with index returns: (i) over
the union of arterioles and capillaries and (ii) over the union of venules and capillaries. Each transform yields, for every voxel
inside the respective mask, the index of the nearest skeleton voxel belonging to that mask subset. These partial nearest—index
fields were then merged: arterial/capillary voxels receive assignments from the first transform and venous/capillary voxels from
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the second, ensuring that an arteriole (venule) is never “pulled” toward a nearby venule (arteriole) solely by absolute distance
when both are present.

For voxels outside the vascular mask (background), we first computed their nearest mask voxel via an EDT of the background,;
each such mask voxel already had a skeleton assignment from the merged arterial/venous fields, which we propagated back to
the background voxel. We then converted all stored nearest skeleton indices into per-voxel Euclidean distances between each
voxel coordinate and its assigned skeleton coordinate, producing a dense distance map and corresponding nearest-skeleton
coordinate arrays. The resulting data structure supports efficient repeated queries (index or coordinate to nearest skeleton
index, class label, or distance) required for downstream graph and path length analyses.

E.2. Efficient shortest-path search on large spatial graphs. We developed a data structure for efficient shortest-path search between
arbitrary skeleton voxel indices in the spatial graph. For each branch in the voxel-level spatial graph, we ordered skeleton
voxels from one end to another and computed the geodesic distance between the centroids of the connected nodes. These
lengths become edge weights in a NetworkX (4) undirected multigraph. A distance query between two voxel indices first tests
whether both voxels lie on the same edge; if so, the path length is the accumulated Euclidean distance along the pre-ordered
coordinates between their positions (direction recorded as +1). Otherwise, each voxel is mapped either to an existing node
or, if it lies inside an edge, that edge is virtually split at the voxel by introducing a transient “dummy” node: we remove the
original edge and insert two new weighted sub-edges whose lengths are computed from the cumulative inter-voxel distances.
With both query voxels thus associated with nodes, we compute the weighted shortest path (Dijkstra) and then restore any
modified edges, removing dummy nodes. Optional caching stores previously computed path lengths and full node paths for
reuse. Additional routines reconstruct the voxel-level path (and per-voxel direction signs) from a node path, derive edge
traversals, and report path direction relative to a chosen start node. Compared to performing each query by constructing a
sparse voxel adjacency and running voxel-level Dijkstra, this data structure enabled > 100 times acceleration in shortest-path
queries in our benchmarks, thereby making feasible spatial-graph—based particle tracking workflows that require millions of
neighborhood searches and distance comparisons.

E.3. lterative spatiotemporal-correlation-based flow velocity estimation. For each branch, we constructed a detection map and used an
adaptive spatiotemporal correlation procedure to estimate average velocity. The detection map is a T-by-/N matrix whose
elements (t,7) indicate if a cell is detected at time ¢ near the i-th skeleton voxel of the branch, where T is the number of frames
and N is the number of skeleton voxels in the branch. We used an initial spatial bin size dr and temporal shift dt to compute
root-mean-square-normalized, shifted pairwise correlations between binned intensity traces. Directional flow was estimated
from correlations whose index offsets share a dominant sign, while their weighted offset gave the average speed. If the velocity
appeared too small yet the correlation dominance was strong, the temporal shift was successively doubled to capture slow
motion. If correlations are indeterminate, the bin size was doubled to improve signal to noise level. The process stopped when
a valid, finite velocity is obtained or when any limits were reached.

E.4. Stationary cell detections. We identified stationary particles through a multi-stage spatiotemporal filtering and tracking
procedure. First, we counted the number of times cells were detected at each voxel. Voxels with counts exceeding a minimum
voxel-detection threshold of 70 were marked “high-count.” A 3-D binary mask of these voxels was dilated with a spherical
structuring element of radius 1 to join immediately adjacent high-count sites into contiguous connected components (CCs).
Only detections whose voxel indices lay inside this dilated mask were retained and temporally ordered, and their positions were
linked into preliminary trajectories using the trackpy package (5), a frame-to-frame particle tracking algorithm constrained by a
maximal allowed displacement. Resulting trajectories with fewer than 5 time points were discarded. Each remaining trajectory
was then assigned to exactly one high-count CC, and CCs lacking any trajectory whose maximal span reached at least 10
frames were removed. Within each remaining CC, trajectories were temporally merged when the inter-trajectory temporal
gap and spatial separation at the junction were less than 5 frames, producing longer composite particle objects. Finally, we
eliminated residual short or fragmented tracks whose total temporal support did not exceed a stricter final threshold of 35
frames.

E.5. Spatial-graph-based predictive cell tracking. We modified and augmented the trackpy framework(5) to perform model-based
particle tracking constrained to a pre-computed spatial graph, enabling accurate association of detections across frames in
tortuous 3D networks.

To incorporate network constraints, we developed a data structure that maintains (1) a nearest skeleton map mapping
arbitrary coordinates to the closest skeleton voxel and (2) an estimated velocity for each edge. For each particle at time ¢, we
projected its position onto the skeleton and predicted one or more plausible next frame positions by propagating along the edge
based on the estimated edge velocity. When a particle was near or passed a node, we predicted all possible downstream edges
whose flow direction was consistent with local flow sign; if the particle would traverse beyond an endpoint within the time step,
we recorded the endpoint position plus a signed “extra travel” distance indicating likely exit from the network.

Candidate selection was based on a nearest neighbor search near the predicted positions. For each prediction, we obtained
up to k spatially proximate detections in frame ¢+ 1. We computed the geodesic distance along the spatial network between the
prediction positions and their nearby candidate detections. For a particle moving along an edge with velocity v, we estimated
the search range as:

v = min{ AV, max{f,v, AVpmin}}, [40]
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where AV and AV,,:, are the maximum and minimum search range, respectively, and f, > 0 was used to estimate the search
range based on edge velocity. Candidates whose geodesic distance exceeded the search range dv were rejected. If a predicted
position lay just outside the network, its remaining distance to the exit endpoint contributed to an extra cost term, while
overly distant exit projections were discarded.

In addition, we integrated feature similarity cost for detection linking. For user specified features (e.g., peak intensity),
we computed a probabilistic similarity score s for each candidate pair, then compute the feature similarity cost as A(1 — s),
where A is the maximum cost due to feature discrepancy. We added this cost to the geodesic distance before solving the linear
assignment problem.

F. RBC partition probability at diverging nodes. For each diverging node, we identified tracked cells that moved from the inflow
branch into one of the outflow branches. For each such cell, we recorded the last time it appeared in the inflow branch and
the branches it subsequently entered. When flow speed was high and the immediate downstream branch was short, a cell
might traverse the entire downstream branch and reach the next-nearest branch. In these cases, we determined the immediate
downstream branch by finding the shortest path along the skeleton between the two tracked detection positions.

For the inflow branch, we constructed a time series N (¢), where the t-th element represents the number of cells that left
the inflow branch at time ¢. Similarly, for each outflow branch ¢, we defined a time series n;(t) representing the number of
cells that entered branch i at time ¢. Assuming a multinomial distribution, the maximum likelihood estimation of the overall
entrance probably into branch ¢ over the recording period is

Zt n; (t)

pi = W [41]

with the estimated standard deviation of the mean given by

[42]

G. Phase separation fitting. To robustly estimate RBC partition probabilities, we selected degree-3 diverging nodes with at
least 25 tracked cells that moved from the inflow branch into one of the outflow branches. Median RBC traversing speed was
used for computing the normalized flow speed ratio. Denote the entrance probability and the flow speed in the i-th downstream
branch as p; and v;, respectively. The preferred entrance probability in Figure 7A is defined as max(p1,p2) and the normalized
flow speed ratio in branch ¢ is k; = |vi|/(Jv1] + |v2]). The flow speed bias is defined as 2(maxz(k1, k2) — 0.5). Phase separation
nonlinearity, n, was determined by nonlinear least-squares fitting using the Trust Region Reflective algorithm, initialized with a
value of 1.

Considering the noise level when combining data across all experiments, we applied an iterative outlier rejection procedure.
After an initial fit, outliers were identified based on the percentile range of the residuals: data points with residuals exceeding
2.224 times the inter-percentile range (equivalent to about 3 standard deviations for a Gaussian distribution) were removed,
and the formula was refit to the remaining data. This process was repeated until no new outliers were detected, resulting in
the rejection of 10 nodes out of 416.
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4. Tracking algorithms performance comparison

A. Particles in a microfluidic tube. We fabricated a microfluidic device and imaged 200-nm diameter fluorescent particles flowing
through the channel driven by a syringe pump using a confocal light field microscope at 2 pm isotropic voxel size and 400 Hz
for 5 s. The microfluidic devices comprised 20-pm-high, 50-pm-wide straight channels (10 mm long) molded in 5-mm-thick
Polydimethylsiloxane (PDMS) and plasma-bonded to 0.17-mm glass slides. Custom PDMS chips were fabricated by Wenhao
Microfluidics (Suzhou, China) using standard soft-lithography procedures (6).

We adapted the computational method described above for particle detection, localization, and feature extraction, and
selected 287,782 high-signal-to-noise detections for tracking. Using the Crocker-Grier algorithm implemented in trackpy, we
tracked particles with a maximum search range of 10 pm. Of the 91.3% detections linked across adjacent frames, 89.5% were
unique matches; that is, only one particle in the next frame laid within 10 pm. The median inter-frame displacement was 1.1
pnm, while the 99 percentile is 5.6 pm (corresponding to 2.2 mm/s).

The slow flow in the microfluidic tube can be well approximated as laminar from end to end, so the angle between a particle’s
velocity in adjacent frames should be about 0°. We therefore selected trajectories that (1) spanned at least 10 frames and (2)
had a maximal angle between velocity vectors in consecutive frames < 60°. Because the predictive tracking algorithm assumed
a constant velocity along the centerline, we further selected trajectories with > 50% of particle positions within 10 pm from the
tube centerline. These criteria yielded 792 trajectories comprising 25,823 detections. For each frame, we computed the nearest
neighbor distance for each particle and then took the median. Across 2000 frames, 50% of the frames had this median distance
greater than 22.1 um, and the minimal observed median is 11.4 ym. The average particle velocity is 1.0 mm/s, with a standard
deviation of 0.35 mm/s, and 99.91% of the linked detections have instantaneous speed less than 1.6 mm/s. These trajectories
served as the “ground truth” for benchmarking tracking algorithms.

As analyzed previously, the performance of the algorithm degrades when the prediction error becomes comparable to the
inter-particle spacing. In our experimental setup, the inter-particle spacing was relatively stable. We therefore subsampled the
trajectory at fixed temporal interval, applied both algorithms to the same subsampled detections with the maximum search
range of 1.6 mm/s and evaluated the performances in terms of precision, recall, accuracy, and F1 score (Figure S3).

Consistent with the theoretical analysis, the Crocker-Grier algorithm started to degrade significantly as the sampling
frequency dropped below (1000 pm/s) / 11.4 pm = 88 Hz. By contrast, Network Flow Tracker (NFT) remained relatively stable
for trajectories downsampled to 25 - 100 Hz. NFT achieved 79% accuracy at 25 Hz, whereas attaining 81% accuracy with
Crocker-Grier algorithm requires a sampling frequency of 67 Hz. The ratio of these frequencies, 25 / 67 = 0.37, is comparable
to the coefficient of variation of the speed distribution, 0.35, again in line with the theoretical analysis.

B. RBC tracking in a reconstruct network. To further evaluate algorithm performance on realistic data, we simulated RBC
trajectories using the vascular network structure and flow measurements measured between 100 and 250 pm below the
cortical surface. Among the 945 interconnected branches, we identified 162 “in-flow” branches in which RBCs moved from an
unconnected endpoint toward a connected endpoint. In each frame, the average number of RBCs entering the network through
the in-flow branch ¢ is given by:
v IV;
LT
where v; is the branch’s average flow velocity, NN; is the total number of RBCs detected in branch i over the recording period
T, and l; is the branch length. For each in-flow branch, we modeled RBC entrances as a Poisson Process with mean r;, and
sampled each RBC’s initial position uniformly along an interval on the vessel centerline, which started at the unconnected
endpoint and had a length determined by the flow speed and frame rate. For each RBC, we assumed a constant intensity
across the network, which was drawn from a Gaussian distribution with a mean of 10,000 and a standard deviation of 2,000.
In each simulation step, we updated particle positions to the next frame. RBC velocities in branch i were sampled from a
Gaussian distribution with a mean of v; and a standard deviation of 0.3v;, matching the in vivo coefficient of variation reported
in the main text. At bifurcations where an RBC could enter multiple downstream branches, the next branch was chosen
uniformly at random. We then identified particles that exited the network and removed them in the subsequent steps. Finally,
we initialized new RBCs in the in-flow branches. Using these procedures, we simulated 179,424 detections across 1,500 frames.
We quantified algorithm performance on these simulated data, where each RBC’s identity and trajectories were known.
Beyond overall statistics, we assessed accuracy within individual branches. As CG used a single global maximum search
range, its accuracy dropped sharply as the inter-frame displacement in a branch approaches this limit (Figure S4A, C). In
contrast, NFT was able to accurately track cells across a wider range of velocity (Figure S4B, D). We further perturbed tracking
parameters used in NFT and found the overall performances to be very stable with respect to a wide range of parameters
(Table S1).

[43]

Ty =

C. Appendix: Algorithm performance evaluation metrics. We evaluated the performance of algorithms by comparing the
tracking results with the ground truths from either speed measurements or simulations. For each particle in frame ¢, the
ground-truth and predicted link targets were stored as one-dimensional integer vectors

ypred7 ygt c ZN7

where the i-th element encodes the target of particle ¢ in frame t + 1 as follows: (i) a value > 0 denotes the index of the
associated particle in frame ¢ + 1 (continuation); (ii) -2 indicates a normal termination, i.e. the particle is predicted to exit the
system; (iii) -3 indicates an abnormal termination, i.e., the particle is lost.

10 of 21 Xiang Ji, Yuchen Zhao, Lu Bai, Kai Wang, David Kleinfeld



We then defined the following mutually exclusive outcomes:
TP: ™ >0, y¥ >0, " =¥,
False connection: 3P4 >0, y&' >0, yP! # 42",
False positive connection: yfred >0, ' <0,

FN: False connection || False positive connection
TN: 3P <0, 45" <0,
FN: yPd <0, 45 > 0.

In addition, we tracked correctness of exit events via indicators for true/false normal exits (yP"*! = 38" = —2 or yP™* = —2 # ¢5")
and true/false abnormal exits (yP°! = y& = —3 or yP°! = —3 # y&").

Let pre, prp, pTN, prn denote the empirical frequencies (means of the corresponding indicator vectors) over all evaluated
samples. We computed the following summary statistics:

Precision = L,
pTP + PFP
Recall = pT7P7
PTP + PFN
Accuracy = pre + prN ,
prp + PTN + PFP + PFN
Fl — 2 - Precision - Recall

Precision + Recall ’
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Fig. S1. Normalized flux and flow speed response to a change in radius. (A) Normalized flux change in a vessel AQ. /Q. in response to its own normalized radius change
Avq /ve. (B) Normalized flow speed change in a vessel Av, /v, in response to its own normalized radius change Apq /pa .-
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Fig. S2. Performance limits of the tracking-based approach for measuring hemodynamics in a multiscale vascular network. (A) Average normalized minimum distance between
cells ({(d) /dys) in a cylinder versus average spacing between cells in free 3D space (d s, /(2R)). Dots are Monte Carlo simulation results for hard spherical particles of radius
r0 in a sufficiently long cylinder, color-coded by the ratio between cylinder radius R and particle radius ro. The solid black line represents the scaling relation for non-interacting
particles in 1D. The dashed black line represents the value for non-interacting particles in 3D. (B) Lengths of d s and (d) in vessels of different diameters for different labeling
fractions, ~. (C) Estimated maximum cell speed that can be reliably tracked by the conventional algorithm (e,, = 1) versus the labeling fraction - in vessels of different radius
R. Estimations are based on an acquisition frequency of 70 Hz. (D) Estimated measurement frequency v,,, versus labeling fraction ~ in a microvessel of different flow speed.

Xiang Ji, Yuchen Zhao, Lu Bai, Kai Wang, David Kleinfeld 13 of 21




A Crocker—Grier B NFT

1.0 A1 1.0 A
0.8 1 0.8 1
o 0.6 1 o 0.6 A
Q Q
&) )
n ()]
04 + 0.4 A
—&— Precision —@— Precision
02 1 ~@®— Recall 0.2 1 ~@®— Recall
—@— Accuracy —@— Accuracy
0.0 - & Fi 004 " F
20 40 60 80 100 20 40 60 80 100
Sample frequency (Hz) Sample frequency (Hz)

Fig. S3. Quantification of particle-tracking performance in a microfluidic channel. Particles were tracked at 400 Hz using the Crocker-Grier algorithm. The resulting trajectories
were uniformly subsampled at varies frequencies and used as ground truths to evaluate tracking performance for the Crocker-Grier algorithm (A) and the Network Flow Tracker

(B).
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Fig. S4. Quantification of tracking accuracy and precision in vessel branches across a range of flow speeds using a simulated dataset. (A) Joint distribution of tracking accuracy
and flow speed for the Crocker-Grier algorithm (CG). The dotted vertical line at 2.8 mm/s indicates the maximum search range AV used by the tracking algorithm. Red curve
represents the median accuracy within each flow-speed bin; error bars indicate the interquartile range. Overall accuracy: 0.817. (B) Same as (A), but for the Network Flow
Tracker (NFT). Overall accuracy: 0.952. (C, D) Median accuracy of CG and NFT using different search ranges. (E, F) Median precision of CG and NFT using different search

ranges.
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Fig. S5. Three-dimensional rendering of the reconstructed mouse brain cortical vascular network in a (1,072 um)?® volume. Red: arterioles; blue: venules; green: capillaries.
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Fig. S6. Equivalent coefficient of variation (ECV) of blood flow in microvessels grouped by branch orders. (A) ECV of blood flow measured at 70 Hz in microvessels located 100
- 250 um below the cortical surface, grouped by geodesic distance (branch order) to the nearest penetrating arteriole (BO 4). The number above the median line indicates the
number of microvessels in each group. (B) Same as A, but microvessels are grouped by geodesic distance to the nearest penetrating venule (BOy/). (C) Same as A, but
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Fig. S7. Statistics of the shortest loop length for microvascular branches across different branch orders from penetrating arterioles and venules computed from the vascular
network shown in Figure S5. For each branch, the shortest loop length is defined as the minimum number of branches forming a loop within the local network that contains the
given branch. (A) A loop that consists of 8 branches in a reconstructed vascular network described in (7). (B) Left: Distributions for 9,049 microvessel branches grouped by
branch order from arterioles (BO 4). Right: the number of branches in each BO 4 group. Each whisker plot shows the minimum, 25th percentile, median (red horizontal bar),
mean (black dot), 75th percentile, and maximum. Red “+” symbols indicate outliers. (C) Same as panel (B), but for 12,238 microvessel branches within 8 branch orders from
venules (BOv).
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Fig. S8. Spatial flow speed variation along cell trajectories. (A) A vessel path connected a penetrating arteriole to a penetrating venule, overlaid on the maximum intensity
projections of the vascular image. Individual branches are color-coded. (B) Same as (A), but for a path toward the capillaries in the deeper layer. (C) Flow speed (mean + SD)

along the path visualized in panel (A). Green vertical lines represent the branch points. (D) Same as (C), but for the path in (B).
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Table S1. Tracking algorithm performance comparison. Detailed performance quantification of the Network Flow Tracker (NFT) and the Crocker-Grier algorithm (CG) applied to a simulated
dataset. AV is the maximum search range. For NFT, the actual search range for each particle was computed dynamically based on AV, AV, in, fv, and the estimated speeds in the branches. A is

the maximum cost for feature discrepancy. The set of parameters in blue was used for the results described in the main text.

Tracking parameters True False False positive False True False True normal False True False
Algorithm | # Detections positive | connection | connection | positive | negative | negative B R normalexit| abnormal abnormal |Precision| Recall |Accuracy F1
AV| fv |AVmin|Features| A . . . . R R exit fraction B B B B .
fraction | fraction fraction fraction | fraction | fraction fraction | exitfraction | exitfraction

10| 0.75| 10 | peak_int| 10 | 0.836 0.017 0.005 0.023 0.113 0.028 0.098 0.022 0.014 0.007 0.974 0.967 0.949 0.870
15| 0.75| 10 | peak_int| 10 | 0.841 0.018 0.008 0.028 0.111 0.022 0.097 0.021 0.013 0.002 0.970 0.874 0.952 0.972
20| 0.25| 10 |peak.int| 10 | 0.841 0.018 0.009 0.027 0.109 0.023 0.096 0.02 0.013 0.003 0.969 0.974 0.950 0.971
20| 0.5 10 | peak_int| 10 | 0.841 0.018 0.009 0.028 0.109 0.022 0.096 0.02 0.012 0.002 0.968 0.274 0.950 0.2971
20| 0.75 5 peak_int | 10 | 0.841 0.019 0.01 0.029 0.108 0.021 0.096 0.02 0.012 0.002 0.967 0.975 0.950 0.971
20| 0.75| 10 N.A. 10 | 0.824 0.036 0.011 0.046 0.107 0.022 0.095 0.021 0.012 0.001 0.947 0.874 0.931 0.260
NFT 20| 0.75| 10 |peak_int| 10 | 0.842 0.019 0.01 0.029 0.108 0.022 0.096 0.021 0.012 0.001 0.967 0.975 0.950 0.971
20| 0.75| 15 |peak.int| 10 | 0.841 0.018 0.01 0.028 0.108 0.022 0.096 0.021 0.012 0.001 0.967 0.875 0.950 0.971
179424 20/ 1.00| 10 |peak.nt| 10 | 0.841 0.019 0.01 0.029 0.108 0.021 0.096 0.021 0.012 0.001 0.967 0.875 0.950 0.8971
25/ 0.75| 10 |peak.int| 10 | 0.841 0.019 0.012 0.031 0.106 0.022 0.095 0.021 0.011 0.001 0.965 0.975 0.948 0.970
30| 0.75| 10 |peak_int| 10 | 0.841 0.019 0.014 0.033 0.105 0.021 0.024 0.021 0.01 0.001 0.962 0.875 0.946 0.969
20| 0.75| 10 |peak.int| 5 0.839 0.021 0.01 0.032 0.108 0.022 0.096 0.021 0.012 0.001 0.964 0.975 0.947 0.969
20| 0.75| 10 |peak.int| 15 | 0.843 0.017 0.01 0.027 0.109 0.021 0.096 0.021 0.012 0.001 0.969 0.875 0.952 0.972
110] 0.653 0.094 0.032 0.125 0.086 0.136 0.013 0.209 0.839 0.828 0.739 0.833
115] 0.713 0.1 0.039 0.139 0.079 0.069 0.012 0.136 0.837 0.912 0.792 0.873
CG 120 N.A. [ N.A. N.A. N.A.| 0.738 0.104 0.044 0.148 0.074 0.04 N.A. N.A. 0.011 0.104 0.833 0.248 0.811 0.887
125] 0.747 0.108 0.05 0.159 0.068 0.026 0.009 0.085 0.825 0.966 0.815 0.890
30 0.746 0.116 0.056 0.172 0.062 0.02 0.008 0.073 0.813 0.874 0.808 0.886

Xiang Ji, Yuchen Zhao, Lu Bai, Kai Wang, David Kleinfeld

20 of 21



References

1. X Ji, et al., Brain microvasculature has a common topology with local differences in geometry that match metabolic load.
Neuron 109, 1168-1187.e13 (2021).

2. Z Zhang, et al., Imaging volumetric dynamics at high speed in mouse and zebrafish brain with confocal light field microscopy.
Nat. Biotechnol. 39, 74-83 (2021).

3. PA Yushkevich, et al., User-guided 3D active contour segmentation of anatomical structures: Significantly improved
efficiency and reliability. NeuroImage 31, 1116-1128 (2006).

4. AA Hagberg, DA Schult, PJ Swart, Exploring network structure, dynamics, and function using NetworkX in Proceedings of
the 7th Python in Science Conference, eds. G Varoquaux, T Vaught, J Millman. (Pasadena, CA USA), pp. 11-15 (2008).

5. DB Allan, T Caswell, NC Keim, CM van der Wel, RW Verweij, Soft-matter/trackpy: V0.6.4 (Zenodo) (2024).

.Y Xia, GM Whitesides, Soft Lithography. Annu. Rev. Mater. Res. 28, 153-184 (1998).

7. P Blinder, et al., The cortical angiome: An interconnected vascular network with noncolumnar patterns of blood flow. Nat.
Neurosci. 16, 889-897 (2013).

(o)

Xiang Ji, Yuchen Zhao, Lu Bai, Kai Wang, David Kleinfeld 21 of 21



	Network flow response to single vessel modulation
	Self-modulation
	Effect on the neighbors

	Analysis of tracking-based hemodynamic measurement approach
	Predictive model enables high-speed dense tracking
	Tracer density variation in a multiscale network
	Average minimum distance between non-interacting particles in a cylinder
	Monte Carlo simulation of hard spheres in a cylinder
	Estimates of average cell spacing d

	Tracer density limits measurements frequency

	Computational methods
	Cortical vascular network reconstruction
	Confocal light field datasets
	Spatial graph reconstruction
	Cell detection
	Network flow tracker (NFT)
	Voxel–to–Skeleton Mapping
	Efficient shortest-path search on large spatial graphs
	Iterative spatiotemporal-correlation-based flow velocity estimation
	Stationary cell detections
	Spatial-graph-based predictive cell tracking

	RBC partition probability at diverging nodes
	Phase separation fitting

	Tracking algorithms performance comparison
	Particles in a microfluidic tube
	RBC tracking in a reconstruct network
	Appendix: Algorithm performance evaluation metrics


