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ABSTRACT Cyclic patterns of motor neuron activity are involved in the production of many rhythmic movements, such
as walking, swimming, and scratching. These movements are controlled by neural circuits referred to as central pattern
generators (CPGs). Some of these circuits function in the absence of both internal pacemakers and external feedback.
We describe an associative neural network model whose dynamic behavior is similar to that of CPGs. The theory
predicts the strength of all possible connections between pairs of neurons on the basis of the outputs of the CPG. It also
allows the mean operating levels of the neurons to be deduced from the measured synaptic strengths between the pairs of
neurons. We apply our theory to the CPG controlling escape swimming in the mollusk Tritonia diomedea. The basic
rhythmic behavior is shown to be consistent with a simplified model that approximates neurons as threshold units and
slow synaptic responses as elementary time delays. The model we describe may have relevance to other fixed action
behaviors, as well as to the learning, recall, and recognition of temporally ordered information.

INTRODUCTION
The collective properties of highly interconnected networks
of model neurons have been the focus of much theoretical
analysis. Recent work on this topic involves networks
whose dynamics is governed by a cooperative relaxation
process (1-5). Starting from an initial state, these net-
works will relax to one of a select number of stable states.
Network models of this form have been used for associative
memory (1) and for solving certain optimization problems
(6-8). The final, stable states represent the retrieved
information or the optimized configuration.

Despite some very suggestive analogies between the
network models and biological computational processes,
their application in biology is unclear. The difficulty in
relating the models to experimental observations reflects,
in part, the difficulty in identifying a cooperative relaxa-
tional process in large, complex nervous systems. Similari-
ties between associative memory networks and central
nervous functions, such as place learning in the hippocam-
pus (9), olfaction (10-12), and visual processing (13) have
been proposed. Yet the models remain untested at the level
of neurophysiology.

Here we study an associative network model whose
collective outputs consist of temporally coherent patterns
of linear or cyclic sequences of states (14, 15). This model
and its extensions may have a variety of implications for
the learning and recall of temporally ordered information.
Our objective here is to draw a connection between the

properties of the model and biological nervous systems that
produce fixed patterns of neural outputs. In particular, we
focus on a class of biological systems known as central
pattern generators (CPGs).
CPGs control the muscles involved in executing well

defined rhythmic behaviors, such as breathing, chewing,
walking, swimming, and scratching. Some networks form-
ing CPGs are anatomically well localized and may contain
small numbers of neurons. Their output consists of
coherent, oscillatory patterns. These features make CPGs
strong candidates for studying the relation between the
output properties of a biological network and its underlying
circuitry.
A number of basic principles about CPGs have emerged

from studies on a wide variety of rhythmic behaviors
(16-21): (a) A rhythmic neural output can occur in the
absence of sensory feedback from the muscles and struc-
tures controlled by the CPG, and in the absence of control
by higher neural centers. These features are clearly dem-
onstrated with spinal preparations (22), i.e., isolated seg-
ments of spinal cord. The output activity of the motor
neurons in these preparations is similar to the rhythmic
firing pattern observed in the intact animal. (b) Some
CPGs function without a pacemaker cell, i.e., a single
neuron whose firing rate determines the output period of
the network. This implies that the rhythmic output is a
collective property of the network. Examples include the
CPG that controls swimming in the mollusk Tritonia
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diomedea (23-25) and possibly the CPGs that control
flight in the locust (26, 27) and swimming in the leech
(28, 29). (c) The same set of motor neurons can be
involved in a variety of rhythmic behaviors in an animal.
This suggests that a CPG may be capable of producing
multiple patterns of rhythmic outputs. Further, animals
can rapidly switch between rhythmic behaviors and may
blend different rhythms together (30).
The model we present may serve as a framework for

understanding some biological systems that produce rhyth-
mic output. The network consists of highly interconnected
model neurons whose essential feature is a nonlinear
relation between their inputs and their output, or mean
rate of firing. The form of the output patterns are encoded
in the strength of the synaptic connections between pairs of
neurons. Thus, our model may be relevant to biological
systems in which the strength and time-course of the
synaptic connections play the dominant role in the genera-
tion of the rhythmic output. The model does not apply to
CPGs in which cellular properties are dominant.

Previous theoretical approaches toward understanding
CPGs have focused primarily on the mechanism of recur-
rent cyclic inhibition (31-33). This mechanism forms the
basis of networks that function as ring oscillators (34).
Alternate theoretical approaches have been described (35-
38).
We compare the predictions of our model with Getting's

detailed measurements on the CPG controlling the swim
rhythm in Tritonia (23-25, 39). This CPG contains a
small number of neurons and produces a single rhythmic
output pattern. Yet the comparison will serve to highlight
many features of the model and to assess its applicability to
biological systems.

THE MODEL

The present model' is an extension of Hopfield's model of
associative memory (1, 2). We consider a network that
contains N interconnected model neurons. The state of the
network is specified by the output activity of all of its
neurons. It is represented by V(t) = {VI(t)I ,. The output
of each neuron, Vi(t), varies between zero (quiescent) and
unity (maximum firing rate).
A pattern is defined as a temporal sequence of output

states. These states, a subset of all possible output states,
are referred to as the embedded states. For example, a
pattern of length Q consists of the sequence

VI. V2 - V3-. . . . VQ- I V

where each state V; - {VP}N is an embedded state. For
the case of a cyclic sequence, of relevance for modeling
CPGs, V' = Vl. The networks can produce multiple
patterns; we define V" as the gth embedded state in the
vth pattern.

'The notation in this work differs from that of previous work on this topic,
(14,15).

We consider patterns in which the output activity of the
model neurons alternatives between a relatively low firing
rate and a relatively high rate. The precise form of this
activity depends upon the detailed characteristics of the
neurons. We therefore assume for simplicity that the
output of each neuron alternates between a quiescence and
its maximum firing rate. Each component Vt" of the
embedded states is thus given by either 0 or + 1. This
assumption allows us to focus on properties of the networks
that result specifically from the form of the connections
between neurons.

Synaptic Connections and their
Response Time

The desired output patterns are encoded in the form of the
synaptic connections between the model neurons. We
define the synaptic connection between the jth presynaptic
neuron and the ith postsynaptic neuron as T,1. A central
feature of the present model is that each connection T.1 is
functionally separated into two components, denoted T,
and TL. The two components are hypothesized to have
different characteristic response times. The synaptic con-
nections T. act on the shorter of the two times, rs. This
time determines the time-scale in which the network settles
in each of the embedded states. The synaptic connections
denoted TL act on the longer time TL (TL >> rs). This time
sets the time-scale for the onset of the transitions between
consecutive states in the pattern. Thus the duration of an
individual state in a pattern will be -TL, while the transi-
tions between states occurs on the faster time-scale of rs.
The role of the connection strengths T. is to stabilize the

network in an embedded state, until a transition to the next
state occurs. This is achieved by defining the T, in terms of
a formal version of the Hebb (40) learning rule, i.e.,

T
j k 2

rs=N E7 (2V- 1)(2V-, - 1) i 0 j, (1)

where k is the total number of patterns, Q = Q(v) is the
length of the vth pattern, T. = 0 and J0 > 0. The prefactor
JO/N sets the scale for the magnitude of the average
strength of an individual synapse. The variable (2 Vt" - 1)
has a value of either -1 (quiescent) or + 1 (maximally
firing) so that inhibitory as well as excitatory synapses are
formed.
The connection strengths T' induce transitions from the

,th embedded state to the (,g + 1)-th state. To achieve
this, we define

L

f k Q_l

T' XA N E (2V+1-1)(2Vj, - 1) i # j, (2)

where X is a positive scaling parameter for the transition
strength and T'j = 0. For the case of cyclic patterns, V"' -
V"'. Note that the T. synapses, which depend on the
consecutive output activity of the neurons, are asymmetric
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(T, : TjL), while the T, synapses, which depend only on
the activity within the individual states, are symmetric.
The rule for forming the T' synapses (Eq. 2) encodes

transitions between consecutive pairs of embedded states.
This allows the network to generate either linear
sequences, cyclic sequences, or sequences down a tree
structure. Several different patterns, as well as isolated,
stable states, can be embedded in the same network.
Patterns that involve ambiguous transitions, such as when
two patterns share the same state, cannot be reliably
produced by the present network. Such patterns can,
however, be incorporated by forming synapses that encode
transitions between distant states along the pattern (41-
43).
The rules defined by Eqs. 1 and 2 for forming the

synaptic components are applicable only when the overlaps
between the embedded states are small, i.e.,

lNN E (2 V;Z-.y-1)(2 F;Vj,.' 1) =- fOr (,U, V) t (,U', V') (3)

and when, on average, half of the neurons are active in each
of the embedded states. Rules that are appropriate for
embedding overlapping states in associative networks have
been described (44-5 1).
The integrated synaptic input to each neuron is assumed

to be a linear summation of the outputs of the pre-synaptic
neurons. The total synaptic input to the ith neuron via the
fast components of its synapses, h0(t), is

N

h0(t) = E TWVj(t). (4)
j-l

The total synaptic input via the slow components, hL(t),
corresponds to a weighted average over the histories of the
neural activities, with a characteristic averaging time of TL.
It is given by

N

hL(t) = E TWV)(t), (5)
j-1

where Vj(t) is the time-averaged output of the neuron,

Vi(t) = , Vi(t - t')w(t') dt'. (6)

The synaptic response function w(t) for the slow, TL,,
components is a non-negative function that is normalized
to unity and characterized by a mean time-constant rL. An
example of the time-course of a postsynaptic response to a
short presynaptic stimulus is illustrated in Fig. 1 A.

Network Dynamics
Before we define the detailed dynamics of the network, we
present a qualitative description in terms of the time
dependence of the neural inputs. For simplicity of notation
we consider a network that produces a single pattern.
Immediately after a transition from the (,u- 1)-th em-
bedded state to the ,uth state, the output of the network is
V(t) = VI and the time-averaged output is V(t) = VI'-'.

C

VNIt)

1V(t)
.; ;al..a- I- 9

TS R; , 2
I

IN
I-0l':--- 1---1-- - -

t i M ----g-

EXTERNAL SYNAPTIC CONNECTIONS
INPUTS

UN-t) r%... V. (t)

NEURONS

FIGURE 1 Schematic representation of the model network and its
components. (A) The time dependent properties of the synaptic connec-
tion from thejth to the ith neuron. We illustrate the postsynaptic response
observed after a short pulse (At<<Ts) of activity in the presynaptic neuron.
The area (shaded) under the fast synaptic response for a pulsed input is
equal to Ts (Eq. 1); in this example we take Ts to be excitatory. The area
(shaded) under the slow synaptic response for a pulsed input is equal to
T' (Eq. 2); in this example TL is inhibitory. The ratio of these two areas,
averaged over all pairs of synapses, equals the transition strength A (Eqs. 2
and 3). The time-course of the slow synaptic response corresponds to the
response function w(t) (Eq. 5); it has a characteristic time-constant of 1-L.
(B) Illustration of a saturating gain function for a neuron. This function
relates the output, or firing frequency of a neuron, V,(t), to the value of its
net input, ui(t), and its mean operating level, 0, (Eq. 8). The output of a
neuron is most sensitive to changes in its inputs when u,(t) O,. (C) The
equivalent circuit describing the model network (Eq. 6). Neurons (D) are
represented by saturating amplifiers, as in part B, with a charging time of
RC Trs, where R represents the net input resistance of the neuron and C
represents the input capacitance. Synaptic connections between each pair
of neurons are represented by conductances ( ) proportional to Ts or
T,L their dynamic properties are illustrated in part A.

The inputs via the fast synaptic components are
N Jo

hS(t) = E TSVj- e 2° (2 V-1),
j 1 l i

where we used Eqs. 1 and 4 and assumed that the overlap
between the Va's are small. The synaptic input hS(t) is
negative, i.e., inhibitory, if V; = 0 (quiescent) and is
positive, i.e., excitatory, if V; = 1 (maximally firing). The
inputs via the slow synaptic components are (Eqs. 2, 5, and
6)

N Lr-lJh N(t)= E T -- X (2V - 1).
j- 2l

(8)
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Thus both h5(t) and hL(t) tend to stabilize the network in
its current state. With increasing time, V(t) gradually
shifts away from VI' and toward the current state VI.
This shift generates an increasingly large component of
hL(t) that is conjugate to VI'. After the network has
remained in the state VI for an interval -TL, the fast,
stabilizing inputs remain unchanged (Eq. 7), but the slow
synaptic inputs have evolved to

L
VN Joh =7TETV;' 2° (2V^+' 1). (9)

The new values of hL(t) tend to drive the network toward
the state VI'. For X > 1 the network makes a rapid
transition to the (,u + 1 )-th embedded state.

Biological networks, either intrinsically or as a result of
damage or disease, may contain only a fraction of all
possible synaptic connections. The performance of our
network model is only marginally affected when up to half
of the fast synaptic components (Ts) and the majority of
the slow synaptic components (Tb) are eliminated at
random. The value of the transition strength X is bounded
by

fraction of T, components present (10)
fraction of TL components present

The detailed dynamic evolution of the network is described
by the equations

S dtu) + u5(t) = hi(t) + hL(t) + Ii

= Z [T, Vj(t) + T,Vj(t)] + Ii, (11)
j-l

where ui(t) is the net input to the ith neuron and Ii
represents an external input. The equivalent electrical
circuit described by these equations is shown schematically
in Fig. 1 C.
The output of a model neuron, V,(t), is related to its net

input, ui(t), by a nonlinear gain function

Vi(t) = g[ui(t) - Oil, (12)

where we assume that the gain function is approximately
sigmoid in sharp. The parameter 0O is defined as the mean
operating level of the neuron2; see Fig. 1 B. Note that the
dynamic features of the model do not depend on the details
of the gain function.3

2This definition is more precise than the usual description in the literature
on associative neural network models, in which 0; is equated with the
threshold level of a neuron. The later designation, however, is in discord
with the neurobiological definition of the threshold level as the minimum
input required to elicit a non-zero firing rate. The two definitions are
equal only for neurons operating as two-state threshold devices.

3More generally, we require that the post-synaptic response of a neuron is
a saturating, nonlinear function of its inputs. This can occur even if the
firing frequency of the pre-synaptic neuron is a linear function of its input
current.

In order that the patterns embedded in the T' and the
TL synapses emerge as stable outputs of the network, it is
desirable that the output of each neuron is maximally
sensitive to changes in its input. This implies that the
difference between the mean operating level of a neuron
and the net input to that neuron, averaged over all its
possible values, must be small. This difference is denoted
by A@;, where

AO, = 0i - [Ui(t)]avg

0.-2 E(T +TN (13)

More precise, we assume that ADi is small compared with
the typical value of the total synaptic input that is present
while the network is producing a pattern, i.e., AO,Il << JO. If
1A0il is comparable with the value of JO, the stability of the
embedded states, and the patterned output, may depend on
the precise values of the 01's. A similar condition holds for
other associative networks (1, 52, 53). Note that Eq. 13
applies only when the embedded states have approximately
equal number of active and quiescent neurons and when
the gain function of the neurons is approximately sigmoi-
dal.

In the present model the time spent by the network in
each embedded state is constant. This time is to TL, while
the time spent making the transition between two states
is -rs. Thus the period of a cyclic pattern comprised of Q
states will be =Q * to. The time to diverges at X = X,_,t, 1
and monotonically decreases as X increases above Xcf,ti,a.4
The precise value of to depends on the value of X, on the
detailed form of the synaptic response function, w(t), and
on the length of the pattern. An analytical expression that
relates these quantities can be derived for network that
produces either long patterns or binary oscillations (next
section). Details are given elsewhere (14, 81).

Example
We simulated a network consisting of 100 neurons with
nine randomly selected embedded states to illustrate how a
network can produce multiple, stable output patterns.
These states were arranged as a single isolated state, a
cyclic pattern among five states, and a cyclic pattern
among three states.

4The appearance of periodic output in our model is similar to a saddle
node bifurcation in the theory of dynamical systems (54). In this
bifurcation a stable state, or several stable states, become unstable as a
control parameter is varied beyond a critical value (e.g., A - XA,,il in our
case). The system exhibits a periodic motion, characterized by a small
frequency but a large amplitude, in which it spends relatively long periods
of time near the pervious stable states and makes rapid transitions
between these states. In contrast, many weakly nonlinear systems exhibit
limit cycles via a normal Hopf bifurcation (54). In this case a periodic
motion, with a small amplitude and, typically, high frequencies, forms
around the destabilized state.

BIOPHYSICAL JOURNAL VOLUME 54 19881042



Fig. 2 A depicts the output pattern from 8 of the 100
neurons. The output is presented in the form of a spike
pattern; the individual spikes were generated by a stochas-
tic process in which the output V,(t) represented the
probability that the ith neuron fired in an interval Trs. This
stochastic process may represent rapid fluctuations in
cellular or synaptic parameters that control the precise
timing of the spike generation. The details of the temporal
relation between the synaptic inputs and the output for a
particular (i = 8) neuron are illustrated in Fig. 2 B; the
remainder of the neurons exhibited a similar pattern.

Biphasic Oscillations
A particularly simple pattern is one that oscillates between
an embedded state VI' {VSN and its antiphase,
(1 - VI), in which the quiescent neurons are now firing
and vice versa. Multiple patterns of this form can be
embedded in our network. The resulting synaptic strengths

z
0
nSD
z

I-

C.)
4

ilu

are (Eqs. 1 and 2)

j k

Ts= NE (2V -1)(2V;-1), i * jI'1 N (14)

and

T _

-V[2(-V) - 1](2Vj,- 1)N

=-XT, i .j, (15)

where k is the number of patterns and TS = T, = 0.
Although the synaptic components T, are, in general,

asymmetric (i.e., TJ : TL) they are symmetric for the
special case of biphasic oscillations (cf. Eqs. 2 and 15). The
relation T, = -XT' implies that the connections corre-
spond to either to short-term reciprocal inhibition followed
by delayed excitation, or to short-term reciprocal excita-
tion followed by delayed inhibition. Note that the symme-

2
h (t) 0

-2

hL(t) 0

-2
2

u0(t) 0
-2

v8(t) I
0

TIME

B
_ j ~~~~-2TS-

arL--

- F

TIME

FIGURE 2 Simulation of a network containing 100 neurons with nine embedded states. These states were arranged as a single isolated state,
a cyclic pattern among five states, and a cyclic pattern among three states. In this simulation the output of each neuron is either quiescent or
firing near its maximum rate. This feature of the output behavior results from the saturation characteristics of the neuron gain function. Other
choices for a gain function can lead to stable output patterns in which the firing rate of the neurons does not saturate. (A) The firing pattern
calculated from the outputs V,(t) of 8 of the 100 neurons in the network; the remainder of the neurons showed a similar firing pattern. The
network was initially in the isolated, stable state V"'. At time t, an external input, I(tj), was applied for a time 7L. This input drove the network
into state V2l and thus initiated the (v = 2)-th pattern. At the later time t2 a second transient input, I(t2), was applied to drive the network into
the state V'"3 and initiate the (v = 3)-th pattern. The heavy lines at the top of the figure correspond to the output period of each pattern. (B)
Details of the dynamic behavior of the (i - 8)-th neuron for the period of time delineated by the box in part A. Shown are the inputs from the
fast synaptic components, hs (t), the inputs from the slow synaptic components, h L(t), the net synaptic input, u8(t), and the output of the
neuron, V8(t). The dynamic equations for the network (Eqs. 4 and 8) were approximated using finite difference techniques. The firing rate of
the neurons was taken to be described by a sigmoid gain function, i.e., V,(t) - 1/2 (1 + tanh [G. (uAt) - O,)J), where 0, given by Eq. 8 with
AG, -0 and G is the gain constant. In this simulation we used G` - J0/4 and chose a delayed, uniform-averaging function for the slow synaptic
response, i.e., w(t) = 1 /TL for 1/2TL < t < 3/2rL and w(t) - 0 otherwise, with TL - 2Ors. The slow response function corresponds approximately
to that shown in Fig. 1 A. The connection strengths were formed according to Eqs. 1 and 2 using randomly selected embedded states. The
transition strength was taken as A = 2. We interpreted the values for the neuronal outputs, V,(t), as the probability that the ith neuron fired in
the interval rs. These probabilites were used to construct the firing patterns for each neuron.
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try in both the T, and the T' components may be broken,
e.g., by eliminating synaptic connections, without strongly
affecting the output behavior of the network.

Self-Coupling Terms

Our model does not include interactions that feed the
output of a neuron back onto itself, i.e., the diagonal
elements TS and TL of the synaptic matrices are taken as

zero. However, one may need to consider nonzero values
for these self-coupling terms when applying our model to a

specific biological system. This is particularly relevant
when a single neuron in the model represents a group of
interacting biological neurons.

When the self-coupling terms are small in magnitude
relative to the average total synaptic input from other
neurons, i.e., Ts I and I TLI are considerably smaller than J0
and XJO, respectively, they do not disrupt the overall
stability of the pattern. Excitatory self-coupling terms will
tend to stabilize the embedded states of the network and
thus may increase the period of the output pattern. Inhibi-
tory self-coupling terms tend to destabilize the embedded
states and thus may decrease the period.
The pattern of output activity may change substantially

when the magnitude of the self-coupling terms equals or

exceeds the magnitude of the average total synaptic input,
i.e., I TSj > J0 and ITLI > XJO. Under these conditions the
dynamics of the network is dominated by the time depen-
dence of the individual neurons, rather than by collective
effects.

CENTRAL PATTERN GENERATOR
IN TRITONIA

We now focus on drawing a connection between our model
and detailed measurements on the central pattern genera-

tor controlling the swim rhythm in the mollusk Tritonia
diomedea (23-25, 55, 56). This CPG consists of four
neural groups, denoted by VSI-A, VSI-B, C2, and DSI.
The observed output pattern consists of bursting output
from VSI-A and VSI-B neurons alternating with bursts
from the C2 and DSI neurons; Fig. 3 A. The output
activity lasts for 2-20 cycles.
Of primary importance is Getting's observation that

some of the synaptic connections have components that act
on different time-scales (23, 25). For example, the synap-

tic input from C2 to DSI shows a rapid excitatory response
followed by a much slower inhibitory response; Fig. 3 B.
The observed form of the synaptic response in Tritonia
suggests that there is an analogy between the mechanism
for oscillations in our theory and the biological mechanism
for oscillations in this CPG.
The thrust of our analysis is to determine if the pattern

generated by the CPG in Tritonia can be explained by the
mechanism we propose for generating patterns. It is impor-
tant to emphasize that we are not attempting to reproduce
the details of the output behavior of Tritonia. For this, one

.
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FIGURE 3 The observed behavior of the CPG controlling the escape

swim response in Tritonia. (A) The output activity simultaneously
measured from a C2, DSI, VSI-A and VSI-B neuron in an isolated brain
preparation from Tritonia. These neurons comprise the CPG that
controls the escape swim sequence. Their output corresponds to V,(t),
V2(t), V3(t), and V4(t), respectively, in the analysis presented in the text.
Vertical bar: 50 mV for C2, DSI and VSI-B and 25 mV for VSI-A.
Adapted from Getting (25) with permission. (B) An example of the
synaptic interaction between two neurons in the CPG in Tritonia. Shown
is the presynaptic activity measured in the C2 neuron, v,(t), and the
postsynaptic response measured in a DSI neuron, v2(t), as the result of a
short pulse of current injected into C2. The measurement was performed
under conditions which insured that only monosynaptic connections
contributed to the observation. The area under the initial, positive going
response corresponds roughly to T2`- that under the slowly decaying
response corresponds to T2L. The time dependence of the slow decay
corresponds to the time dependence of w(t). Vertical bar: 40 mV for C2
and 2 mV for DSI. Adapted from Getting (23) with permission.

would necessarily include the detailed biophysical proper-

ties of the neurons and their synaptic connections, as has
been discussed for this (24, 57) and other (58) CPGs. For
instance, we will not consider the mechanisms for the
observed gradual turning off of the output pattern of the
CPG.

Synaptic Connections

The observed output sequence is approximated by an

oscillation between a state V+ and its antiphase V- -
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(1 - VI), where

activity of C2 + 1 O

V+ == and V- = .(16)
VSI-A 0 + 1

VSI-B 0 +1

These states are used as the stable embedded states in our

model. By considering only these two states, we ignore the
detailed phase relations during the short transition periods
and the phase changes that occur during the gradual
turning off of the CPG.
The short-term connection strengths, T', and the long-

term connection strengths, T', deduced from the stable
outputs V+ and V- (Eqs. 1, 2, and 16) are shown in Table
I. Note that these matrices of synaptic strength contain all
possible connections that can be present between pairs of
neurons.

How do the predicted synaptic strengths compare with
the observed values? The strength of a synaptic connection
is proportional to the integral, with respect to time, of the
conductance changes induced in the postsynaptic neuron

by a short (t < rs) pulse of activity in the presynaptic
neuron. These integrals can be estimated from intracellu-
lar measurements of the potentials induced in the postsy-
naptic neuron by a short (t - rs) burst of action potentials
in the presynaptic neuron under conditions that insure that
only monosynaptic pathways contribute to the observed
response. In practice, however, the measured postsynaptic
response may be effected by a variety of cell membrane
properties and by details of the experimental conditions. It
may therefore be difficult to accurately estimate the
synaptic strengths from available experimental data.

We made a crude classification of the observed synaptic
strengths in Tritonia based on the pairwise measurements
of Getting (23, 25) and on Getting's detailed analysis (57)
of the time dependence of the synaptic response. The
observed response was classified as either a fast compo-
nent, T,, or a slow component, T,, according to the
time-scale of the decay of the observed synaptic response.
Synaptic components that decayed on a time-scale <1 s
were designated as fast whereas synaptic components that
decayed on a time-scale substantially >1 s were designated
as slow.

In our simple analysis, we have considered primarily the
sign of the measured post-synaptic response. Thus detailed
variations between the values of the individual Ts connec-

tion strengths and between the T' connection strengths
were neglected. For example, the synaptic connection from
C2 to DSI(Fig. 3 B) was parameterized by the values
Ts= +J0/4 and T' = -XJO/4. Nevertheless we have not
included synaptic components whose strengths are consid-
erably weaker than the rest. The complete set of connection
strengths Ts and T' are summarized in Table I; a more
detailed discussion of the assignments is given later. These
synaptic strengths were used to construct the equivalent
circuit shown in Fig. 4 A.
The determination of the value of the transition

strength, X, involves a considerable degree of uncertainty.
This uncertainty reflects, in part, the difficulty in separat-
ing the fast and slow components that contribute to the
measured synaptic response. We have considered values of
X in the range X = 5-10 in our simulations. A large value
for X appears to be consistent with the magnitude of the
slow versus the fast response observed in some of the
synapses, e.g., Fig. 3 B.
The signs of the experimentally observed synaptic

TABLE I
SYNAPTIC CONNECTION STRENGTHS FOR TRITONIA

Fast synaptic components, Ts Slow synaptic components, T,

j -1 2 3 4

0 +1 -1

Jo +1 0 -1

4 -1 -1 0

-1 -1 +1

Jo +I 0 -:
4 -1 -1 0

* I-1

O

Jo -I

14+1
+ 1

-1I

-1I

+1I

0

-11

-1I

+1)

0

-1 +1 +1

0 +1 +1

+1 0 -1

+1 -1 0

C D VA VB

* * v
0 0

Jo -1 0 *
4 +1 +1 0

+1 0 0*
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The synaptic connection strengths for Tritonia. The theoretical values were found using Eqs. 1, 2, and 10. The observed values were abstracted from the
data of Getting (23,25); filled circles indicate connections that are not present in Tritonia.
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FIGURE 4 The neural network model applied to the CPG in Tritonia.
(A) Schematic representation of the equivalent circuit for the network
model; symbols as in Fig. 1. The synaptic strengths contained in the
circuit correspond to the observed connections TS, and T' (Table I). (B)
Simulated output activity from the network model in part A. The arrows
indicates the start of the simulated output from the intial states
V(t < ) KV(t < )- (011 1)T. The dynamic equations for the network
were simulated with G' - Jo/O in the sigmoid gain function defined in
the caption for Fig. 2. The slow synaptic response was chose to approxi-
mate the response observed in Tritonia (Fig. 3 B), i.e., w(t) - l/TLe-'/TL
for 0 < < X and w(t) - 0 otherwise, with TL - 5rs. The transition
strength was taken as A - 10. The period of the simulated output is 2to -
2.5TL for this value of A. The form and timing of the simulated,
steady-state output is consistent with the rhythmic behavior observed in
Tritonia (cf Fig. 3 A).

strengths match those of the theoretically predicted
strengths (Table I). Three of the possible twelve synaptic
connections show both a short-term and a long-term
response. Connections (i, j) = 3, 1 and (i, j) = (3, 2) both
show short-term inhibition followed by a long-term excita-
tion, while connection (i,j) = (2, 1) shows short-term
excitation followed by long-term inhibition. The form of
these connections illustrates how the sign of the net
synaptic input to a neuron can change over time.

Network Dynamics
We now examine whether our network model, using the
synaptic strengths observed for Tritonia (Table I), indeed

vsI

gives rise to a rhythmic output. We begin with a simplified
analysis that accents the role of the synaptic connections in
generating stable oscillations. For this analysis we use
neurons that are operating in the high-gain limit (Fig.
1 B), i.e., V,(t + rs) = stp[hs(t) + h'(t) - 0,1, where
stp[X] = +1 for x > 1 and stp [xJ = 0 otherwise and we
take AOi = 0 (Eq. [13]). We also employ a delta function
delay for the slow synaptic response function, i.e., w(t) =
b(t - TL).

Immediately after the network has stabilized in the
embedded state VI, the output of the ith neuron is Vi(t) =
V I, but the delayed output is Vi(t) - V(t - L) = VI.
The output of the ith neuron after the next update, using
the matrices containing the observed connection strengths
(Table I), is

Vi(t + TS) stp [Ts (2Vj+- 1) + TL (2Vj--1)]

+1
- Vi+ (17)

for X> 0. Thus the output of the network is stable on the
time-scale of Ts. After the network has remained in the
state VI for a time TL, the delayed output changes to
V(t + TL) = V(t) = VI. The output of the ith neuron
after the next update is

Vi(t + TL + TS) Stp L[Ts (2Vjf- 1) + T, (2Vj+ - 1)]}

(18)
+1

For X> 3. The network is now in a mixed, unstable state.
Using this new value for the current state in the update
procedure gives

4

Vj(t + TL + 2TS) = stp j [T, (2Vj(t + TL + TS) 1)
j-1

+ TL(2Vj+-)]- V-. (19)

The network has now completed a transition from the state
VI to the state V-. It will remain in this state for a time
to TL, after which the cycle will repeat itself. The output
of the network will oscillate only if the transition strength is
X < 3 (Eq. 18).
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The simplified analysis presented above suggests that
the mechanism for rhythmic output proposed by the model
may be applicable to the CPG in Tritonia. To further
ascertain the correspondence between the model and the
observed properties of this CPG, we studied the dynamics
of the model network using parameters appropriate for
Tritonia. Eqs. 11-13 were simulated using the observed
connection strengths (Fig. 4 A), analog neurons (Fig. 1 B)
and a synaptic response function w(t) that decays exponen-
tially over time; this function approximates the response
observed in Tritonia (57). Stable oscillations of the form
described by the previous simplified analysis (Eqs. 17-19)
were observed. The output activity for the transition
strength X = 10 is shown in Fig. 4 B.
The period of the rhythmic output, 2to, depends on the

values of TL, X, and on the form of w(t). We estimated the
value of to, deduced from the theory by both analytical and
numerical methods using rs < 0.5 s, the observed range of
TL = 2 s to 5 s (57), X = 5 to 10 and w(t) as described above.
The calculated period was 2 < 2to/TL < 4 for the range of
parameters 5 < X < 10 and 5 < TL/Ts s 10; this implies
2to = 4s to 20s. The lower estimate, corresponding to
X 10, is in accord with the experimental value (25) of
2to = 6s to 1Os (Fig. 3 A).

Neuron Operating Levels

We now consider the issue of the mean operating level of
each neuron, 0i. In order for the network to produce a
stable, rhythmic pattern, the firing rate of each neuron
must be sensitive to changes in the value of its input. The
values of 0i that optimize this sensitivity are given by Eq.
13. For the connections in Tritonia, this relation becomes

10

1 4 -1

ol t- l + l E: (Ts + TL ) - Ii + J0'o
8 -1 +2A

\-1 +X /

(20)

with X > 3. Consider the DSI neuron first (i = 2). Eq. 20
implies either that this neuron should be in a tonically
excited state when it is functionally isolated from its
synaptic inputs (02 < 0), or that this neuron requires an
external excitatory input for the CPG to be active (I2 > 0).
A combination of both of these features is observed in vivo
(24, 39). The DSI neurons fire tonically, although at a
considerably reduced rate, in isolation (24). Activation of
the CPG in Tritonia requires an effective excitatory input
to the DSI neurons (39). After this input is removed, the
output from the CPG gradually looses its temporal coher-
ence and the CPG becomes inactive. We next consider the
VSI neurons. In the absence of synaptic inputs and exter-
nal inputs, the output of VSI-B is expected to be quiescent
(04> 0). This result is in agreement with observation
(25).

The problematic neuron is VSI-A. This neuron is not
known to receive an external input while the CPG is
producing oscillatory output. Thus, according to Eq. 20,
VSI-A should have a positive operating level. In practice,
VSI-A exhibits a weak tonic output when it is functionally
isolated (24). Violation of Eq. 20 suggests that the oscilla-
tions in the output of VSI-A will be less robust than that of
the other neurons. This conclusion is consistent with the
observed outputs, i.e., the relative change in the firing rate
of VSI-A during the oscillations is smaller than that of the
other neurons (Fig. 4 B).

Assumptions in Assigning
the Synaptic Strengths

Several assumptions were made in assigning the observed
connection strengths. The connection from DSI to C2
exhibits short-term excitation followed by a much weaker
long-term excitation. We ignored the weak long-term
effect; thus Ts = +J0/4 and T' = 0. Similarly we have
ignored the weak, extremely slow inhibition ('r - 15 s) that
appeared in some measurements of the synaptic coupling
from VSI-B to the DSI; thus T' =- J/4 and T' = 0.
This component does not appear to play a significant role
in controlling the dynamics of the network on the time-
scale, to < 5 s, of the rhythmic output (P. A. Getting-
private communication).
The observed synaptic connection from the DSI to

VSI-A exhibits two short-term responses as well as a
long-term response. Short-term inhibition is preceded by a
relatively shorter period of excitation, with the pair fol-
lowed by long-term excitation. We ignored the initial,
relatively short excitation and assigned Ts =-J0/4 and

= +XJo/4. A different choice for the sign of Ts does
not significantly affect the output pattern of the network.
The synaptic coupling between VSI-A and VSI-B could

not be measured under conditions that suppressed possible
indirect interactions, i.e., poly-synaptic pathways, between
these neurons (25). Intracellular excitation of VSI-B
caused VSI-A to weakly fire; we assigned T' = +J0/4 and
34= 0. Excitation of VSI-A caused a slow depolarization

in VSI-B, but did not cause it to fire. We chose Ts= T =
0, but one cannot rule out the possibility Ts = 0 and TL >
0. An analysis of the network dynamics showed that stable
oscillations persist if T 3 is excitatory, so long as it is
weaker (by -25% or more) than the other slow synaptic
components.

Interactions Among the DSI Neurons
There are three ipsilateral DSI neurons, connected to each
other via excitatory connections (23). Noting that these
cells fire in synchrony with each other when the CPG is
active (23) and that functional removal of some of these
cells does not effect the basic rhythmic output (39), we
grouped all three DSI as a single neuron. The role of the
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DSI as separate neurons pertains to the turning on and
turning off of the cyclic response (39), a topic we do not
consider in detail.
The fast excitatory interaction among the DSI neurons

can be incorporated by including a nonzero self-coupling
term, T2s, in the model. An analysis of the network
dynamics shows that inclusion of this term has a relatively
small effect on the output of the network. For example, the
period increased by only 10% when the self-coupling
strength was set equal to the typical strength of the other
synaptic inputs, i.e., T' = +J0/4. Some of the DSI
connections exhibit a slow excitatory component. This can
be modeled by taking a nonzero value for T'. The
magnitude of this term must be assigned with care. There
is only one (dominant) slow synaptic input to the DSI from
the other neurons, i.e., TL, = -XJ0/4, and thus the
rhythmic output will be disrupted for T2 ' +XJo/4.
However, an analysis of the network dynamics for Tritonia
shows that the rhythmic output is not appreciably effected
if TL < +0.5 XJo/4. This constraint on TL is consistent
with the observed couplings strengths (23, 57).

DISCUSSION

The present model for generating output patterns has
several attractive structural and functional features. It
describes pattern generation in arbitrarily large, highly
interconnected networks. The model does not necessarily
rely on specific organization of the connections, (e.g., a
ring-like organization [34] or a Petri net [59]). The
synaptic connections are not symmetric and the network
can contain both excitatory and inhibitory synapses. It can
also operate with only inhibitory connections. The distrib-
uted nature of the network and the inherent feedback
between neurons endow the network with a high robust-
ness.
Our model does not use pacemaking cells or a system

clock to generate patterns. Rather, the sequential output
results from the interplay between fast synaptic compo-
nents, which stabilize the embedded states, and slow
synaptic components, which trigger the transitions. The
detailed form of the slow synaptic response is not critical.
The network will function properly so long as most of the
slow components have roughly the same time-constant.
The network can produce multiple patterns of different

lengths and topologies. Neither the embedded states nor
the patterns need to have any specific structure. In fact, the
model works optimally with patterns of random, uncorre-
lated states. An individual pattern can be accessed in an
associative manner, such as by an input that only partially
resembles one of the embedded states in the pattern. Well
defined mechanisms exist for modulating the output period
of a pattern and for switching between patterns. Lastly, the
model employs a simple relation between the output pat-
terns and the synaptic connections.

Analysis of the CPG in Tritonia
We used our associative network model to analyze the
CPG controlling the swim rhythm in the mollusc Tritonia.
The basic rhythmic output could be accounted for by a
simplified analysis that employed threshold units as neu-
rons and that replaced the response function of the slow
synapses by a simple time-delay. This analysis served to
emphasize the role of the connections between neurons in
determining the collective output of this CPG.

This sign and time course of the observed synaptic
strengths were in accord with the values predicted by the
formalized Hebb (40) learning rules (Eqs. 1 and 2). This
suggests the utility of such rules for predicting the strength
of the underlying synaptic connections from the observed
output states.
Our analysis demonstrates that, within the framework of

our model, even a small network can function with the
elimination of many of its theoretically possible connec-
tions. Many more fast synapses than slow synapses are
present in Tritonia. The fast synaptic components stabilize
the output states, and thus relatively few of these synapses
can be eliminated (i.e., 25% of all possible T.'s are
eliminated; see Table I). Partial elimination of the slow
synaptic components can be offset by an increase in the
transition strength, X. This compensation may occur in
Tritonia.
Our analysis also showed how the required balance

between the mean operating level of each neuron and the
value of its external inputs and the strength of its synaptic
connections can be simply estimated. We argued that the
mean operating level of the VSI-A neuron in Tritonia is set
too low. This result explained the relatively weak changes
in the firing activity of VSI-A during periods of otherwise
active output by the CPG (Fig. 3 A). Our result futher
suggests that the activity of VSI-A will alternate more
sharply between bursting and silence if its operating value
is raised, e.g., by the injection of a small hyperpolarizing
current.

Multiphasic Synapses and Synaptic Delays
A variety of biophysical and biochemical mechanisms
allow synapses to act on more than a single time-scale (60).
Chemically mediated synapses can show both fast and slow
responses, as well as a combination of the two. For
example, the synaptic connections in Tritonia act on
time-scales that differ by up to a factor of thirty (23).
Some of the chemically-mediated synapses present in the
network controlling the flight rhythm in the locust exhibit
a delayed excitatory response (27). Chemically-mediated
synapses in the stomatogastric ganglion of the lobster
exhibit both prompt and delayed inhibitory repsonses (61).
Electrotonic connections provide a potential mechanism
for the presence of both slow and fast synapses in a
network. The high resistance of these couplings between
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neurons in the CPG controlling feeding in the snail Heli-
soma cause their response time to be an order of magnitude
slower than other synapses in the network (62). The
converse situation occurs in the circuit controlling feeding
in the mollusc Navanax, where the electrotonic couplings
act rapidly compared with the chemically-mediated
synapses (63). Synaptic delays can also result from the
delays inherent in active propagation along a relatively
long process and when the synaptic connections TL
between pairs of neurons are mediated by interneurons.

Neurons may contain cellular as well as synaptic delays.
Cellular delays can affect the response time of a neuron to
many or all of its synaptic inputs. When the response time
of the cellular delay is short compared with the slow
synaptic response time, TL, the separation of the time-scales
between rs and TL iS maintained and the output properties
of the network model are unaffected. On the other hand,
some well characterized cellular delays can be considered
in terms of an effective synaptic delay. For example, the
outward potassium current IA (64, 65) is partially responsi-
ble for the delayed response of the VSI-B neuron in
Tritonia (25, 57). This current has the effect of allowing
only slow excitatory inputs into VSI-B, but does not affect
the time-scale of the inhibitory connections.

Lastly, our model is capable of producing rhythmic
output in large networks that contain only monophasic
connections. In this case, a synapse has either a fast
response time or a slow response time, but not both. The
strength of each synapse is chosen according to the formal-
ized Hebb rules (Eqs. 1 and 2), but the minimum value of
the transition strength, X, depends on the relative number
of fast versus slow connections (Eq. 10). This suggests that
our model may be appropriate for analyzing CPGs that do
not contain multiphasic synapses.

Modulation of the Output
The output activity of many CPGs can be initiated and
modulated by external inputs from command neurons
(66, 67) or from circulating neurohormones (68-70).
Large changes in the period of the output can occur if the
external inputs or neurohormones affect either the time-
constant of the slow synaptic response, TL, or the transition
strength, X. For example, a neuromodulator that selectively
augments the strength of the slow synaptic components, or
diminishes that of the fast components, will shorten the
period of the output. It will be interesting to see if
neurophysiological correlates for these and related predic-
tions are found.

It should be emphasized that we have considered so far
only networks with parameters, e.g., synaptic strengths,
neuron operating levels, and external inputs, that do not
change in time. Biologically these parameters undergo slow
changes, such as increases (facilitation) or decreases (fa-
tigue) in the values of the synaptic strengths. This slow

change may modulate the overall behavior of the network.
For example, a gradual change in the mean operating
levels or an external input will dephase the output pattern
of a CPG. This will eventually terminate the oscillatory
output, similar to the effect of the slowly decreasing tonic
input to the CPG in Tritonia (Fig. 3 A) (39, 71).

Learning and Plasticity

One of the central features of the model is the simple
relationship between the output patterns and the connec-
tions, i.e., the formalized Hebb learning rules (Eqs. 1 and
2). These rules allow new patterns to be embedded in the
network by modifying the synapses both incrementally in
time and locally in space; the change to each synapse
depends only on the activities of the postsynaptic and
presynaptic neurons during the learning of the new pat-
tern. Local updating of the synapses makes the present
model particularly suitable for large, complex systems that
are continuously updated as patterns are modified or
added. This feature also pertains to some other network
models of sequence generation (41, 72-75).
We introduced the relation between the sequential form

of the T, synapses (Eq. 2) and their slow dynamic response
(Eqs. 5 and 6) as an ad-hoc assumption. These two
features may, in fact, be closely related to each other. If
one considers the evolution of the synaptic strengths in
terms of a dynamic learning mechanism, the different final
forms of the T, and the T, synaptic components may be
the result of the different time-scale of their dynamic
response. For example, the Tfs components can relate two
experiences that are separated by the characteristic
response time of the slow components, while the Tij compo-
nents can only aid in recalling the presence of either
experience. It would be interesting to test this idea in a
biologically plausible model of learning. Finally, we note
two other potential applications of the model. One involves
the relation between learning rules that depend on the
history of neuronal activity and the temporal associations
inherent in classical conditioning (76-78). A second in-
volves the recognition of sequences of sensory input
(15, 42, 79, 80).
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