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Prospect for feedback guided surgery with ultra-short pulsed
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The controlled cutting of tissue with laser light is a natural

technology to combine with automated stereotaxic surgery. A

central challenge is to cut hard tissue, such as bone, without

inducing damage to juxtaposed soft tissue, such as nerve and

dura. We review past work that demonstrates the feasibility of

such control through the use of ultrafast laser light to both cut

and generate optical feedback signals via second harmonic

generation and laser induced plasma spectra.
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The anatomy of animals consists of a variety of distinct

tissue types that may be directly juxtaposed to each other.

Hard tissue constitutes bone in vertebrates and chitin in

insects, while soft tissue constitutes skin, muscle, con-

nective tissue, and nerve. The ability to surgically operate

on hard tissue structures without inflicting damage to

surrounding soft structures, such as removing bone while

not affecting underlying nerve, is especially important for

in vivo neurophysiological studies.

In vivo imaging of neuronal activity [1] or blood flow [2] in

the brain with resolution near the optical diffraction limit

typically requires mechanical thinning [3–5] or removal

[6,7] of a portion of the skull to gain optical access to the

brain. The realization of a craniotomy or thinned-skull

preparation requires fine surgical skill and is typically

performed with a hand-held dental drill. The outcome of

the procedure can vary widely from surgeon to surgeon.

This influences the physiology of the underlying brain,

including the potential for inflammation [8], disturbed

vasodynamics [9], and cortical spreading depression [10].

Craniotomies often stand as the rate-limiting step in
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biomedical research that enables the use of sophisticated

optical tools to image structures deep within the cortex

[11,12] of mouse models of brain function, in which

structural or functional fluorescent indicators are

expressed in specific cell types [13] (Figure 1A). A similar

set of concerns exists for gaining optical access to the

spinal cord [14].

Paths to automation of animal surgery are motivated by

computer numerical control machine tools as a mechan-

ism to guide a cutting tool to form craniotomies [15]. We

consider the literature in support of ultra-short pulses,

that is, of order 100 fs, of laser light, as a tool for surgical

cutting [16–23] (Figure 1B). We then ask: (1) How can

ultra-short pulses be incorporated with range-finding to

provide constant control of the cutting path? (2) How can

ultra-short pulses be combined with optical spectroscopy

to provide feedback on the type of tissue being cut? (3)

What are the prospects for an integrated surgical and

diagnostic approach that can cut quickly and accurately,

while minimizing collateral damage to neighboring tissue

that must be preserved? This would allow plasma-

mediated cutting to merge with robotic surgical tech-

niques [24].

The physics of plasma-mediated ablation for
cutting tissue
Plasma-mediated ablation with pulsed laser excitation

builds on the concept of local excitation of molecules

through nonlinear absorption, yet uses energy densities

that are high enough to tear molecules apart rather than

just drive electronic transitions that lead to fluorescent

relaxation [25�]. Energy fluence, defined as the energy

per unit area in the pulse, is a natural metric to describe

the extent of material damage produced by a short laser

pulse focused to a spot. As an example, a 10-nJ, 100-fs

pulse that is focused to an 1-mm2 area yields a fluence

of 1 J/cm2 (Figure 2) or an intensity of 10 TW/cm2. This

is equivalent to an electric field of �108 V/cm or �1 V/

Å, which approaches the �10 V/Å Coulomb field seen

by valence electrons in atoms and molecules and leads

to significant electron tunneling that frees bound elec-

trons from their molecular orbitals to form a plasma

[26].

The plasma grows as the free electrons seed an impact

ionization cascade that involves acceleration of the elec-

trons by inverse-Bremsstrahlung absorption, in which an

electron absorbs photons while colliding with molecules

[27]. After several absorption events, the free electrons
a-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020
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Cranial window to image brain function. (A) Maximal projection of a

stack of images taken through a transcranial, thinned skull preparation.

The skull was imaged with second harmonic generation (blue), the

vasculature by two-photon laser scanning microscopy of blood plasma

stained with the dye Texas red conjugated to dextran (70 kDa) (red), and
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achieve sufficiently high kinetic energy to ionize another

molecule by impact ionization. This cascade, along with

the continued generation of photoelectrons, leads to

exponential growth of a micrometer-sized plasma bubble.

Eventually the plasma becomes dense and limits the

penetration of the incident light to a skin depth of only

tens of nanometers. The restricted penetration depth

provides axial localization of the plasma that is far better

than the focal depth of the incident light.

The termination of the laser pulse is followed by recom-

bination of the free electrons with the positively ionized

molecules at the focus (Figure 3A). This occurs on the

picosecond time scale of electron collisions at typical

electron densities and leads to a transfer of energy from

the electrons to the material on a time scale that is short

compared to the �100 ps acoustic relaxation time in the

material. The result is a dramatic pressure increase within

the excitation volume that can produce a rupture of the

material and form a cavitation bubble. The bubble con-

stitutes the region of ablation. The expansion of the

cavitation bubble is associated with an acoustic shock-

wave that propagates into the surrounding tissue [28] and

has the potentially deleterious effect of spreading damage

into the sample.

The special nature of plasma-mediated
ablation with ultra-short pulses
The minimum value of the fluence necessary to cause

ablation depends on the width of the laser pulse and is

lowest for ultra-short laser pulses [29–31] (Figure 3B),

where the threshold level of order 1 J/cm2. In practice,

fluences of 10–100 J/cm2 have been used for the abla-

tion of a number of hard tissues, beginning with pio-

neering work on cuticle [32], followed by the cutting of

dental enamel [33], dentine [34] and, of direct

relevance, bone [35–37] (Figure 3C). The precision

of plasma-mediated ablation of hard tissue was demon-

strated by cutting microscopic features in bone [38]

(Figure 3D).

A crucial issue for the use of plasma-mediated ablation in

surgery is the magnitude and extent of the rise in

temperature of the volume that surrounds the ablation

region. The literature is equivocal on this point. Theor-

etical calculations point to a rise in temperature that

decays in less than a micrometer from the site of the

plasma bubble [39]. Yet direct measurements of the rise

in temperature yield values that range from one-tenth to

ten degrees at distances of tens to hundreds of

micrometers from the site of ablation [40–42]. As a

practical matter, microscopic ablations have been
a-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020

the pyramidal neurons of layer 5b were imaged via their endogenous

expression of green fluorescent protein (green). Adapted from [4]. (B)

Idealized schematic of the use of pulsed laser light to reliably cut away

bone and form a craniotomy or thinned-skull preparation.
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Scales in optical-assisted plasma-mediated ablation. A typical state-of-the-art amplified Ti:Sapphire system produces a 10 kHz train of 100 mJ, 100-fs

pulses, to achieve a peak power of 1 GW at an average power of 1 W.
achieved for the cutting of fine subcellular processes [43–
48], as well as the cutting of corneal tissue [49,50] and the

manipulation of fine vascular processes [51–53]. Histo-

logical analyses of brain tissue ablated with a strongly

focused beam show that the damage is confined to within

a micrometer of the ablated surface [54] (Figure 3E). In
toto, these data support the utility of plasma-mediated

ablation with ultra-short laser pulses as a precision surgi-

cal tool.

Second harmonic generation for range-
finding but not tissue identification
Automated surgery requires a means to detect the surface

of the skull or other hard tissue as well as to map the local

shape of the surface. Range-finding based on interfero-

metric techniques is common, yet range-finding can also

be performed by harmonic generation with the ultra-short

laser pulses [55�].

Second harmonic generation is a nonlinear process that

produces coherent photons with twice the frequency of

the incident laser pulses when the intensity of applied

laser pulses is sufficiently high [56,57]. The strength of

the signal depends on the molecular structure of the

material. It must be asymmetric, in the sense that oppos-

ing molecules do not point in opposite directions, and

have a high second-order electric susceptibility. Many

tissues, including bone [58,59] (Figure 4A) as well as

connective tissue [60] (Figure 4B), and nervous tissue

[61] (Figure 4C) meet these criteria. In vivo second

harmonic imaging is particularly useful for feedback

guided surgery since it depends only on intrinsic proper-

ties of the sample and does not require external dyes to

image [58,62,63].
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The second harmonic signal is diffraction limited and thus

provides high spatial resolution as the beam is scanned

through the sample. For scattering media, such as both

hard and soft tissues, backscattered second harmonic signal

from the surface and from the inside of the sample can be

used for measuring the thickness of the sample [64–66].

The focus of the beam is scanned from above the surface of

the sample and down along the z-axis [55�] (Figure 4D).

The second harmonic signal will rise towards its maximum

value as the focus enters the sample. It then drops in

amplitude as the focus moves further into the sample

where optical aberrations distort the focus of the beam

and both incident and second harmonic photons are lost to

scattering [55�,67–71] (Figure 4E). The thickness of the

sample can be determined from the intensity profile up to

the depth that the second harmonic signal is undetectable;

the maximum measurable thickness is likely to be less than

1 mm in analogy with the imaging depth of two photon

laser scanning microscopy [72,73].

Laser induced plasma spectroscopy for tissue
identification
Second harmonic generation enables the non-disruptive

determination of surface location and curvature and sample

thickness, yet the signal is not unique to the type of tissue.

The complementary technique of laser induced plasma

spectroscopy [74,75,76�] may be used to distinguish hard

from soft tissue. Here, the light emitted from the ablation

region (Figure 3A), which corresponds to the recombina-

tion spectra of ionized atoms and molecules, is analyzed

with a spectrometer to resolve the atomic composition of

the material (Figure 5A). The laser induced plasma spec-

trum can be used to distinguish among different biological

samples based on their chemical composition [77–80]. In
a-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020
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Plasma-mediated ablation of biological tissue with ultra-short laser pulses. (A) Emitted light from the plasma bubble in glass melted by 100-fs pulses

whose fluence is well above threshold. Adapted from [105]. (B) Plot of minimum fluence for ablation as a function of pulse width. The short 100 fs

pulses have the minimum fluence. Adapted from [30]. (C) Scanning electron micrograph of a porcine long bone cut in air. Adapted from [37]. (D)

Scanning electron micrograph of patterned bone cut in air. Adapted from [38]. (E1) Bright-field image of immunostained surface of fresh brain tissue

from rat, cut under saline. After completion of the optical ablation, the tissue was fixed, frozen, physically sectioned at a thickness of 25 mm,

immunostained with anti-tyrosine hydroxylase, and visualized with diaminobenzadine precipitation. The brown regions correspond to immunostained

axons and cell bodies. (E2) Tissue similar to that in panel G but imaged at high magnification to illustrate the cutting of individual axons (*). (E3)

Immunoreactivity near an optically cut surface in unfixed neuronal tissue.
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Figure 4
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Second harmonic generation from biological tissue using pulsed laser light at amplitudes below the threshold for ablation. (A) The signal from

collagenous periosteum (green) and calcein-loaded osteoblast precursors (grayscale) in mouse long bone. Second harmonic light was measured in

backscatter. Adapted from [58]. (B) Signal from connective and muscle tissue from an explanted leg muscle. Adapted from [60]. (C) The signal from the

CA3 region of hippocampus shows individual axons that emanate from the pyramidal neurons (arrowheads). Adapted from [61]. (D) Schematic of the

apparatus for range-finding with second harmonic generation. Adapted from [55�]. (E) A depth image of a fascia membrane attached to chicken

muscle tissue formed from the intensity of the backscattered second harmonic signal; the logarithm of the signal is shown versus a lateral dimension

and depth. The analog values of the depth profile are shown for four lateral positions on the right. Adapted from [55�].
particular, bone and other calcified tissue may be distin-

guished from soft tissue based on the strong calcium

emission peaks [81�,82,83] (Figure 5B).

Feedback guided surgery must frequently be performed

in an aqueous environment to protect living tissue. In this
Please cite this article in press as: Jeong D, et al. Prospect for feedback guided surgery with ultr
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case, the laser induced plasma spectrum may be unre-

solved as a result of pressure broadening and shortened

emission lifetimes [84,85]. A number of approaches have

been implemented to overcome these complications. Of

particular interest is the use of double-pulse excitation

scheme [83,86–88]. Here, the incident ultra-short laser
a-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020
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Figure 5
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Laser induced plasma spectroscopy using ultra-short laser pulses in air. (A) Schematic of the process. Adapted from [75]. (B) The resultant emission

spectrum for bone tissue versus spinal cord, a soft tissue. Adapter from [81�]. Note that soft tissue only has the sodium D line at 589 nm.
pulse is split, with both pulses focused on the same region

of the sample but with one delayed by order of one

nanosecond relative to the other [89,90]. The second

pulse of light interacts with the plasma created by the

first pulse and the emission spectrum has a greater signal-

to-noise ratio than the spectrum after a single pulse. This

improvement may relate to greater heating of the plasma,

or the formation of an air-like expansion environment

after the first pulse that minimizes pressure broadening of

the plasma emission after the second pulse [86,91,92].

Further, temporal-gating of the collection of the spectra

will isolate the signal from the initial broadband spectrum

that is generated by nonlinear processes and initial
Please cite this article in press as: Jeong D, et al. Prospect for feedback guided surgery with ultr
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pressure broadening at the center of the plasma bubble

[76�,86,93–95]. Details aside, the existing literature sup-

ports the real-time identification of bone versus soft tissue

via their optical emission spectrum on a pulse by pulse

basis (Figure 5B) and forms the basis for control of the

laser ablation beam.

Feasibility
An initial demonstration of feedback controlled surgery

involved a perfused and fixed mouse head [96]. Plasma-

mediated ablation with ultra-short laser pulses was used

to cut an opening in the skull. The position of the head

was under computer control via a three-axis motorized
a-short pulsed laser light, Curr Opin Neurobiol (2011), doi:10.1016/j.conb.2011.10.020
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Figure 6
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Preliminary results on plasma-mediated ablation of the rodent skull. (A)

Data from a fixed but intact animal. The optically-cut window measures

2 mm by 1 mm. (B) The use of temporal focusing to achieve a greater

depth profile with more efficient cutting. Adapted from [102�].
translation stage. The laser induced plasma spectrum was

continuously monitored, with a scheme similar to that in

Figure 5A, and was used to shutter the beam when

regions of soft tissue were encountered. This led to a

precision craniotomy that transversed the midline, a

difficult manual procedure, without overt damage to

the sagittal sinus (Figure 6A). Range-finding was not

incorporated in this demonstration.

The depth of the ablated region depends on the numeri-

cal aperture of the objective and the energy of the

incident laser pulses [30,31,54]. Higher energy will lead

to deeper cuts. Thus the full power of the amplified laser

source cannot be utilized to make shallow cuts with a

single focus near the interface of bone and soft tissue.

Two schemes that can make complete use of the output

of the amplified laser source are cutting with multiple

foci, as an extension of multi-focal imaging techniques in

two-photon laser scanning microscopy [97–100], and

temporal focusing [101,102�]. The latter scheme utilizes

the spectral bandwidth of the laser pulse to decouple the

axial and lateral spatial widths of the focus, so that one can

construct shallow, pancake-shaped foci whose axial

extent is at the diffraction limit but whose lateral extent

is broad. This technique was used to ablate a variety of

materials, including skull [102�] (Figure 6B).
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How rapidly can cutting be achieved? The most powerful

commercial amplified system, currently the WyvernTM

1000-30 Ti:Sapphire regenerative amplifier (Kapteyn-

Murnane Laboratories, Inc., Boulder), produces 1.6 mJ

pulses at 10 kHz. This implies an ablation rate of 1 mm3

in 30 s for a single, temporally focused beam. The actual

rate for removal of tissue can be faster if the ablation is

designed to undercut the surface of the tissue. Lastly,

temporal focusing may be further used to pattern as well

as cut surfaces [103]; this may allow adhesives to stick

more reliably to bone.

Epilog
No device currently exists that combines the cutting

capability of plasma-mediated ablation, using ultra-short

laser pulses to ensure negligible collateral tissue damage,

with feedback control of the cutting process. The tech-

niques reviewed here for range-finding and online tissue

identification, all of which rely on the use of ultra-short

pulses, can in principle be combined with plasma-

mediated ablation to achieve a device for automated

removal of bone juxtaposed with soft tissues. This forms

the basis of a tool to further industrialize experimental

physiology [104] through the automatic realization of

craniotomies and thinned skull transcranial windows

(Figure 1).

The challenges that abound for experimental studies in

small animals are also present in numerous head and neck

surgical procedures on human patients. Many surgical

procedures with humans require thinning and removal of

bone that overlies nerve and dura. As examples, these

include procedures to decompress the optic, facial, or

trigeminal nerve after tumor growth or traumatic injury as

well as procedures to remove tumors from cranial regions

that may be accessed through facial cavities, such as the

clivus, a hollow that seats the pons, and the sella turcica, a

hollow that seats the pituitary. Plasma-mediated ablation

may prove to be useful for these tasks, where the rela-

tively slow cutting rate of plasma-mediated ablation is

offset by the precise feedback control.
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