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SUMMARY AND CONCLUSIONS 

1. Here we study the variability in extracellular records of action 
potentials. Our work is motivated, in part, by the need to construct 
effective algorithms to classify single-unit waveforms from 
multiunit recordings. 

2 s We used microwire electrode pairs (stereotrodes) to record 
from primary somatosensory cortex of awake, behaving rat. Our 
data consist of continuous records of extracellular activity and 
segmented records of extracellular spikes. Spectral and principal 
component techniques are used to analyze mean single-unit wave- 
forms, the variability between different instances of a single-unit 
waveform, and the underlying background activity. 

3. The spectrum of the variability between different instances 
of a single-unit waveforms is not white, and falls off above 1 kHz 
with a frequency dependence of roughly f -‘. This spectrum is 
different from that of the mean spike waveforms, which falls off 
roughly as f -4, but is essentially identical with the spectrum of 
background activity. The spatial coherence of the variability on 
the lo-pm scale also falls off at high frequencies. 

4. The variability between different instances of a single-unit 
waveform is dominated by a relatively small number of principal 
components. As a consequence, there is a large anisotropy in the 
cluster of the spike waveforms. 

5. The background noise cannot be .represented as a stationary 
Gaussian random process. In particular, we observed that the spec- 
trum changes significantly between successive 20-ms intervals. 
Furthermore, the total power in the background activity exhibits 
larger fluctuations than is consistent with a stationary Gaussian 
random process. 

6. Roughly half of the single-unit spike waveforms exhibit sys- 
tematic changes as a function of the interspike interval. Although 
this results in a non-Gaussian distribution in the space of wave- 
forms, the distribution can be modeled by a scalar function of the 
interspike interval. 

7. We use a set of 44 mean single-unit waveforms to define the 
space of differences between spike waveforms. This characteriza- 
tion, together with that of the background activity, is used to con- 
struct a filter that optimizes the detection of differences between 
single-unit waveforms. Further, an information theoretic measure 
is defined that characterizes the detectability. 

INTRODUCTION 

Much of the study of neuronal activity relies on the infer- 
ence of the spiking output from individual neurons on the 
basis of measurements of their extracellular signals. How- 
ever, extracellular recordings of brain activity often contain 
signals from more than one neuron. Because neighboring 
neurons often have quite different physiological properties, 
it is usually desirable to discriminate the signal from one or 
more individual neurons that contribute to the signal. This 
discrimination is based on differences in the details of the 
extracellular action potential waveforms as a consequence 

of the type and spatial distribution of currents in the cell 
and as a function of the position and geometry of the elec- 
trode. These differences provide a means to classify different 
waveforms as belonging to the same neuron. However, extra- 
cellular sources of noise and intrinsic spike-to-spike variabil- 
ity obscure the classification process. 

A priori, we expect that there are at least two sources of 
variability that may contribute to the observed shape of the 
extracellular waveform of a given neuron. The first origi- 
nates in extracellular currents from other cells. Every part 
of a neuron, e.g., axons, dendrites, and synapses, is capable 
of generating currents (Llinas 1988), so there are many 
possible microscopic sources of noise. If these sources are 
uncorrelated with the observed spike, at least on the millisec- 
ond time scale, this contribution may be viewed as additive 
noise. A second source of variability may be associated with 
systematic changes in the spike waveform. For example, 
changes in the height and width of the action potential have 
been observed in successive spikes of a burst, as seen in 
some layer 5 pyramidal neurons in vitro (McCormick et al. 
1985). 

Here we analyze extracellular records from layers 2/3 
through layer 6 of primary somatosensory vibrissa cortex in 
rat. We ask the following questions. I) What is the spectral 
composition of the spike waveform variability and the back- 
ground neuronal activity? 2) Is the spectral composition sta- 
tionary across time? 3) Is the amplitude distribution of the 
variability Gaussian ? In particular, systematic variation in 
the shape of the spike waveform may lead to an apparent 
non-Gaussian distribution. 4) Can we use these results to 
construct an optimal filter for the detection of differences 
between waveforms from different single units? 

Our motivation is twofold. On the one hand, we suggest 
that systematic patterns of variability in the extracellular 
signal may be useful for the in vivo classification of neuronal 
type. On the other hand, the decomposition of multiunit 
extracellular signals into contributions from individual units 
is fundamentally dependent on the statistics of waveform 
variability both extrinsic and intrinsic to the neuron. We 
suggest that these statistics have not been properly accounted 
for in past work. 

Preliminary accounts of this work have appeared (Mitra 
et al. 1995). 

METHODS 

Electrophysiology 

We recorded regular- and fast-spiking units (Simons 1978) from 
layers 2 through 6 of the vibrissal area of primary somatosensory 
cortex of Long-Evans rats. Four independently adjustable stereo- 
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electrodes (McNaughton et al. 1983) were implanted through the 
intact dura mater into neocortex. In brief, the electrodes were con- 
structed from a twisted pair of 25mm polyamide-coated tungsten 
wires (California Fine Wire, Grover City, CA). The ends of the 
electrodes were cut with sharp scissors at a 45’ angle and gold- 
plated. Electrode impedances in physiological saline were typically 
0.1 MO at 1 kHz for both reactive and resistive components, and 
electrodes produced a Johnson noise of - 30 nV& over the fre- 
quency band of interest. Signals were buffered near the head of 
the animal with field effect transistors (NB Labs, Denville, TX), 
amplified ( x 104), band-pass filtered between 300 Hz (5pole Bes- 
sel high-pass filter) and 10 kHz (&pole constant-phase low-pass 
filter; Frequency Devices, Haverhill, MA), and digitized at 25 
kHz with a 12-bit digital-to-analog converter (no. DT2821; Data 
Translation, Marlboro, MA) that had an effective resolution of 
10 bits. The acquisition was controlled by the “Discovery” data 
acquisition program (Datawave Technologies, Longmont, CO). 
The care and experimental manipulation of our animals were in 
strict accord with guidelines from the National Institutes of Health 
( 1985) and have been reviewed and approved by the Institutional 
Animal Care and Use Committee at Bell Laboratories. 

Data acquisition 

Data were acquired in either of two modes: continuous acquisition 
mode or segmented acquisition mode. In continuous mode, the digitized 
voltage signals from stereotrode pairs are continuously recorded to disk. 
The signals for each pair are denoted VX (t) and Vy (t), where x and y 
label the wire and t is a discrete variable; an example from a particular 
pair is shown in Fig. la. Sections of data containing spikes were 
selected with the use of a threshold crossing criterion. We extracted a 
segment of 64 samples with the peak of the spike centered at sample 
11 (see Fig. la, vertical lines) ; each segment defines a pair of vectors 
denoted Vt) = ( Vx(t + qJ)~!& and V$@ = ( Vy(t + qJ}Tb..(& where 
T, is the time of the peak of the rtth instance of the waveform and T 
= 64. Spike waveforms were sorted on the basis of the amplitude at 
the peak of the waveform on each wire, i.e., peak (VP)) versus peak 
(V$? } (Fig. la, inset). A small sample of the sorted waveforms is 
shown in Fig. lb and the autocorrelation function of the arrival times 
for the entire set of sorted waveforms is shown in Fig. 1 c. The autocor- 
relation shows a clear suppression of spikes at short intervals, consistent 
with the spike train of a single unit. For the purposes of our analysis 
of waveform variability, we include only extracellular records with one 
or two well-isolated single units. 

The difference between a particular instance of a spike waveform 
and the mean waveform is defined as a spike residual. We calculate 
the residuals for all sorted waveforms as follows. 1) The segmented 
spike waveforms (see above) are resampled to place the center of mass 
of their peak at sample 11 (Fee et al. 1996) and the mean waveform 
is calculated as the average of the centered, segmented waveforms. 
This procedure removes the dominant source of jitter in computing the 
average waveform. 2) The mean waveform is resampled by cubic spline 
interpolation to generate a template with 0.8~ps resolution. Temporally 
shifted versions of the mean waveform are generated by shifting the 
template in 0.8~ps steps and resampling at the 40-ps sample period. 
We thus generate a set of 50 mean waveforms, each shifted in time 
by 0.8 ps, that span the 4O+s sample period. 3) Each of the shifted 
means is subtracted from the spike waveform, and the residual with 
the minimum total squared error is kept; a sample of spike residuals 
and their amplitude distribution is shown in Fig. 1, d and e, respectively. 
In addition, a segment of 64 samples of the continuous record in the 
interval between 4.0 and 1.44 ms before the onset of each spike wave- 
form is extracted for the purpose of analyzing background activity. 

In segmented acquisition mode, a threshold crossing of either signal 
of the stereotrode pair triggers the acquisition of the spike waveforms 
on both wires, as described in Fee et al. (1996). In contrast to the case 
of continuous acquisition, only 32 samples of the waveform from each 

of the two wires of the electrode may be saved. The voltage sample 
with the largest amplitude (waveform peak) is set as the fifth sample, 
the data are recentered as described in Fee et al. ( 1996), and the 
companion waveform is shifted in register; a time stamp saved with 
each waveform indicates the time of the waveform peak with 100~ps 
resolution. Segmented acquisition was used to obtain the relatively large 
number of waveforms required for our results on optimal filtering; in 
this case as many as four single units per wire were isolated, as de- 
scribed in Fee et al. (1996). 

Spectral analysis 
We used the direct multitaper estimation techniques of Thomson 

( 1982) to calculate the power spectral density, denoted &,(f), 
and the coherence, denoted R,, (f ) , from the measured voltage 
signals. These spectral measures are defined by 

and 

where 
i.e. 

- 2 IVI = VV* and ( l l l ) denotes an average over all tapers, 

(TO) = i L i 5 Q(n,k)@n,k) 
n=l k=l 

(2) 

(3) 

where V@yk) = (~n.k’(f)}-h - f=. is the discrete Fourier transform of 
V(“) multiplied by the kth window function, or taper, wk = 
(wk(t))Td& (see below), i.e., Pk)(f) = I=fL!y, exp[i2@] 
Wk(t)V@)(t), N is the number of instances of the waveform (- lo3 
to lo4 in the present work), and K is the number of tapers (2 or 
3 in the present work). The Nyquist frequency is fN = (2t,)-’ 
where ts is the time per sample (40 ps in the present work). For 
the spike residuals, the above formula holds with V@) replaced 
with SV@), where SV’“) = V(“) - (V). 

The use of multiple tapers yields K independent estimates of the 
spectrum, which are averaged to form a final spectrum (Eq. 3). 
The frequency resolution of the spectrum, defined in terms of half- 
width of the spectral bands, Af; satisfies 

(2-Af)*(T*ts) = K + 1 (4) 

For spike waveforms acquired in continuous mode (T = 64), A f - 
600 Hz. Note that additional smoothing, but no change in bandwidth, 
is obtained by averaging the spectra from multiple instances (Eq. 3). 

The multitaper methods offer advantages (Percival and Walden 
1993 ) that are particularly critical to the estimation of spectra for 
the mean spike waveforms. In particular 1) the spectra have a large 
dynamic range of amplitudes. The sequences used to construct the 
tapers, wk, are an orthogonal set of functions (discrete prolate 
spheroidal sequences) that minimize the leakage of power between 
frequency bands. 2) The segmented spike waveforms contain a 
peak that, by construction, occurs at one end of the record. The 
use of multiple tapers, even two, provides a relatively balanced 
weight across all regions of a record, as opposed to the preferential 
weight given to the center of a record with only a single taper. 

Principal components 

The set of waveform vectors V(“) exists in a T-dimensional space. 
We consider the directions, known as the principal components, 
that minimize the covariance between the projections of vectors 
(Ahmed and Rao 1975; Golub and Van Loan 1989). The correla- 
tion or covariance matrix is denoted C, where 

c = (VV’) (3 
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is a real symmetrical T by T matrix with elements C(t, t’) = 
(V( t)V( t ’ )); the average is over all instances and satisfies N > 
T. The principal components, denoted U, with LY = 1, . . . T, are 
the eigenvectors of C, i.e. 

cu, = gu, 
where hz is the ath eigenvalue (variance) ; the order of the eigen- 
vectors is chosen so that the magnitude of the eigenvalues decrease 
monotonically. From a different perspective, the Uus are the col- 
umns of a unitary matrix U = [ U1, Uz, . . . , UT] that diagonalizes 
C, so that 

u=cu = A2 (7) 

where A* is a diagonal matrix with diagonal elements XT, Ai, . . . , 
h;. Last, the T-dimensional vectors V(“) and UTV(“) form a trans- 
form pair; the former is the representation of the waveform in time 
and the latter is the representation in the space of principal compo- 

FIG. 1. Representative stereotrode data. a : volt- 
age signals from each of the 2 microwires, denoted 
V, and V,, as a function of time. Vertical lines 
segment a region that corresponds to a spike wave- 
form. Inset: distribution of spike waveforms as a 
function of the maximum value of V$“‘(t) and 
VP)(t), for all instances of the waveforms (N = 
2,600). Only those waveforms witbin the dashed 
box are kept. Note that the distribution of points 
in the projection for this figure appears artificially 
broad. b: sample of 100 sorted spike waveforms 
from the data in a. Note the high degree of overlap 
among all waveforms. c: autocorrelation function 
of the spike arrival times for all instances of the 
waveforms. The absence of any amplitude at equal 
times implies that all of the waveforms could origi- 
nate from the same single unit. d: distribution of 
residuals as a function of time for each microwire. 
These residuals are calculated by subtracting the 
mean waveform from each instance of the spike; 
50 waveforms were used for this calculation. e: 
distribution of residuals for all sample points shown 
in d; note that it is nearly Gaussian. 

nents. Identical considerations hold with V(“) replaced by SV(“), 
etc. 

For the special case in which the waveforms are translationally 
invariant in time, so that C(t, t’) = C(t - t’), the diagonal 
elements of the correlation matrix form the Fourier transform of 
the power spectrum, truncated to Tpoints in time, and the eigenvec- 
tors can be calculated solely from the spectral properties of the 
waveforms. For the further limit of an infinite length time series, 
i.e., T --) 00, the principal components are sinusoids and the above 
transforms (Eq. 6 and 7) reduce to Fourier transforms. 

RESULTS 

Spectral properties 

We consider first the spectral density (Eq. I) of the spike 
waveforms and associated variability, and focus on 2,600 
spike waveforms recorded on one wire for the regular-spik- 
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FIG. 2. Spectral analysis of spike waveforms 
and variability. a : power spectral density for a regu- 
lar-spiking unit ( inset), S,, (f ) . Note the close cor- 
respondence between the power in the spike residu- 
als and that in background activity taken from the 
same continuous record. b: power spectral density 
for a fast-spiking unit (inset). The frequency de- 
pendence of the electronic noise is essentially the 

Regular Spiking Unit 
frequency response of the electronics. c and d: 
spectral coherence, R,,( f ), across the 2 wires of 
the stereotrode pair for the units in a and b, respec- 
tively . 

0 2 4 6 8 10 0 2 4 6 8 10 12 

Frequency [kHz] Frequency [kHz] 

ing unit presented in Fig. 1. We observed that the spectral 
density of the mean spike waveform has a broad maximum 
at low frequencies (f - 500 Hz) and falls off monotonically 
above - 1 kHz roughly as S,, (f ) CC f -4 (Fig. 2a). The 
average spectrum of spike residuals has a smaller amplitude 
at low frequencies and falls off with a frequency dependence 
of &x(f) Oc f-** The average spectral density of the back- 
ground activity is essentially identical to that of the spike 
residuals. Last, the spectrum of the filtered electronic noise 
is lower in amplitude than any of our signals (Fig. 2b). The 
electrical noise is white over the frequency range in question 
(METHODS), so that the frequency dependence of the filtered 
spectrum is determined by the filters; the spectral properties 
of the spike residuals are thus minimally affected by the 
electronic filters. 

The spectral density observed for the average waveform 
of a fast-spiking unit is shown in Fig. 2b. As in the case of 
the regular-spiking unit, the spectral density falls off mono- 
tonically at frequencies above -2 kHz, although with a 
steeper frequency dependence than that observed for regular- 
spiking units. Further, the spike residuals and background 
activity have similar spectral properties to those shown in 
Fig. 2a. In general, the above results (Fig. 2, a and b) are 
characteristic of those found for all regular-spiking units 
( 10) and fast-spiking units (5 ) for which we performed 
spectral analysis. 

Clues to the origin of waveform variability come from 
the coherence (Eq. 2) of the signals across the stereotrode 
pair. A source of variability common to both wires of the 
stereotrode would lead to a coherence of 1, whereas an inde- 
pendent noise source on each wire would result in a mea- 
sured coherence close to 0, or more precisely - 10 -* for 
our system.’ The two signals from the stereotrodes show a 

’ The limiting coherence is given by the inverse of the square root of the 
number of independent spectral estimates. The latter number is equal to the 
number of tapers, K, times the number of samples, N, so that for random 
data one would have R,,( f ) 5 -*jkM = -‘/2*2,600 = 1.4*10-*. 

high degree of correlation at frequencies <3 kHz, i.e., 
R,, (f ) - 0.8, which falls to R,, (f ) < 0.4 at higher frequen- 
cies (Fig. 2, c and d) . This implies that the high-frequency 
sources of variability are more localized on the scale of the 
separation between the stereotrode wires, 25 pm, than are 
the low-frequency sources. 

The nonwhite spectrum of the waveform residuals implies 
a degree of correlation between the individual samples of the 
residuals. The structure of these correlations is revealed by 
examining the principal components of the covariance matrix 
of the spike residuals. The eigenvalues and eigenvectors were 
calculated (Eqs. 5 and 6) for the covariance matrix of the 2,600 
spike residuals for the single unit used in the spectral analysis 
of Fig. 2a (Fig. 3a). The histogram of sorted eigenvalues is 
seen to fall off rapidly as a function of component number, 
with three to four dimensions accounting for half of the total 
variance (Fig. 3a, 0). Further, the variance along the largest 
principal component of the spike residuals is typically >3 
orders of magnitude larger than the variance along the smallest 
principal component. In contrast to the spectrum for spike 
waveforms, the sorted spectrum for isotropically distributed 
Gaussian noise is relatively flat (P. P. Mitra and A. M. Sen- 
gupta, unpublished result), with roughly 20 dimensions ac- 
counting for half of the total variance and a ratio of largest to 
smallest principal component of -2 (Fig. 3a). All single- 
unit clusters we have observed yield a similarly anisotropic 
eigenvalue spectrum of the covariance matrix. These results 
imply that the distribution of spike waveform residuals is highly 
anisotropic in the 64-dimensional space of the residuals. 

The eigenvectors associated with the first five principal 
components of the spike residual waveforms for are shown 
in Fig. 3b. The components are dominated by frequencies 
that are low compared with the Nyquist frequency, (2@ -’ = 
12.5 kHz, which indicates the presence of a large degree 
of temporal correlation between the waveform residuals at 
different sample times. Last, the correlation matrix for the 
spike waveforms is not translationally invariant in time be- 
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FIG. 3. Principal component analysis of spike waveform residuals and background activity. a: eigenvalue spectrum for 
the spike residuals ( l ) and the background activity (- ), sorted by amplitude. The nearly horizontal line is the spectrum 
for white noise, normalized so its integral is equal to that for the residuals. b : 1st 5 eigenmodes or principal components of 
the spike residuals. Note the mixture of frequencies in all modes. Dashed line: mean spike waveform. c: 1st 5 eigenmodes 
for the background activity. Dotted lines: eigenmodes calculated from the power spectrum; the close correspondence between 
the 2 shows that the response is stationary. 

cause some variability is locked in time to the spike wave- 
form. Thus the eigenvectors are not consistent with those of 
a stationary Gaussian signal (Fig. 3b). 

The spectrum of the background activity, like that of the 
spike waveform residuals, is also nonwhite (Fig. 2, a and b). 
As in the case of the spike waveforms, the sorted eigenvalue 
spectrum falls off rapidly as a function of component number; 
in fact, the two spectra are essential identical for the higher 
principal components (Fig. 3a). On the other hand, the seg- 
mented waveforms are expected to be translationally invariant 
for the case of background activity in that there is no relation 
between the temporal location of excised regions and features 
in the data record. For this case the eigenvectors can be calcu- 
lated solely from the power spectrum (METHODS). We observed 
a good match between the eigenvectors calculated directly from 
the correlation matrix of the background activity and those 
calculated indirectly from the power spectrum of the activity 
(Fig. 3 c) . This comparison acts as a self-consistency check on 
our numerical methods and demonstrates that the background 
activity is not locked to our sample window. 

Time dependence 

Up to now we have considered the average properties of 
the spike waveform and the variability. We now examine 
the time dependence of the background activity to determine 
whether or not the variability can be modeled as a stationary 
Gaussian process. Three consecutive 20-ms segments of the 
voltage signal on one wire of the stereotrode during an epoch 
in which no spikes are observed are shown in Fig. 4a. Quali- 
tatively, the signal appears quite different between segments; 
this difference is highlighted through a comparison of the 
spectra for each segment with each other and with the aver- 
age spectrum for 4,000 such segments (Fig. 4b). In particu- 
lar, the spectra for the 20-ms segments have substantial peaks 
in the subkilohertz frequency range, whereas the average 

spectrum is smooth. In general, significant spectral peaks 
occur in most of the 4,000 segments recorded. 

As a second measure of nonstationarity, we consider 
changes in total power, as opposed to changes in spectral 
content, as a function of time. The total power in consecutive 
20-ms segments, calculated from the integral of the individ- 
ual power spectra, i.e., S,, = &S,,(f), is shown in Fig. 4c 
for a 4-s epoch. We compared the fluctuations in the inte- 
grated power with those expected for a stationary random 
process with the same average power spectrum;2 the inte- 
grated power for an epoch of the derived stationary signal 
is shown in Fig. 4c (gray line). The fluctuations in the total 
power of the stationary signal are clearly smaller than those 
in the measured signal. To quantify this difference, the distri- 
bution of the total power in each segment of the measured 
signal and the derived stationary signal were calculated. The 
power distribution of the measured signal is roughly 3 times 
as wide at the 10 and 90% points as is the distribution of 
the stationary Gaussian random process (Fig. 4d), with a 
significant tail at high power. In toto, we find that the back- 
ground activity cannot be modeled as a stationary Gaussian 
random process. To the extent that the background activity 
is the dominant contribution to the variability among spike 
waveforms, this variability is not stationary. 

Systematic variability 

The distribution of projections of the spike residuals onto 
the principal components of the residuals need not be 

2 The fluctuations for the equivalent stationary process were calculated as 
follows: the spectra for 4,000 segments of numerically generated Gaussian 
random noise were constructed, each consisting of 500 samples (20 ms -+ 
40 ps per sample). The spectrum for each segment was computed and then 
multiplied by the average spectrum determined for the background activity 
(Fig. 4b). The distribution of power in this set of derived spectra was then 
calculated ( Fig. 4 d) . 
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FIG. 4. Nonstationarity of background 
activity. a: voltage waveforms for 3 20-ms 
epochs of background activity. 6: power 
spectra of the epochs shown in a. c: inte- 
grated power for successive 20-ms epochs. 
Gray line: power for an equivalent stationary 
Gaussian random process (see text for de- 
tails). d: distribution function for the mea- 
sured power and the derived power for an 
equivalent stationary process. Note‘ the 
greater spread in amplitudes for the observed 
spectrum. 

Gaussian, although the distribution of residuals at each time 
sample may be nearly Gaussian, as seen for the data (Fig. 
le). In particular, we observed that the distributions of pro- 
jections of the residuals onto the first few principal compo- 
nents of the variability are skewed for about half of the 
units we examined. For the higher principal components, 
the distribution of projections is generally not significantly 
different from Gaussian. 

The apparent non-Gaussian distribution of the dominant 
‘modes may be the consequence of systematic changes in the 
spike waveform over time. One mechanism. for change is a 
slow drift in the position of the electrode, so that the spike 
waveform changes over the course of the data set; no such 
drift is seen for the waveforms analyzed in this work. A 
second mechanism is a change in the shape of the underlying 
action potential that depends on the history of firing by the 
cell. In support of this conjecture, we observe that the shape 
of a spike waveform depends on the interval from the preced- 
ing spike, denoted the interspike interval (IS1 or 7). For 
ISIS > 100 ms, the waveform is different, typically narrower, 
than that for ISIS < 10 ms; this is shown for two single units 
in Fig. 5, a and c. Note that we now consider the composite 
waveform for the stereotrode, V(“) = [VP’, V$“‘]. 

To quantify the change in the shape of the waveform, we 
determined the projection of each spike waveform along a 
direction defined by the difference between the long-IS1 av- 
erage waveform, denoted V,, and short-IS1 average wave- 
form, denoted Vs. The projection is defined as 

pm = (” (“I - 9,) * AVLs 
(A”,)* 

(8) 

where AVLs = 0, - Vs, so that a value near 0 means a 
spike waveform has a strong overlap with VL, whereas a 
projection whose value is near -1 means a waveform has 
a strong overlap with 0,. The nth instance of the waveform 
has an associated IS1 denoted 7,. A shift in the value of the 
projection for spike waveforms that follow a long IS1 relative 
to those that follow a short IS1 is clearly seen for the two 
single units of Fig. 5, b and d, respectively; the shift is 
comparable with the width of the distribution for either unit. 
The distribution of projections, integrated over all ISIS, is 
clearly not Gaussian (Fig. 5e). 

In general, the time-dependent shift in the shape of the 
spike waveform is described by a vector, each of whose 
components is a different function of the ISI. However, the 
changes we observe can be modeled simply as a constant 
vector multiplied by a single function of the ISI, denoted 
f(r). The average waveform, denoted V, changes accord- 
ing to 

V(T) = 0, + (0, - V,)f(T) (9) 

We take f(7) to be a single exponential, i.e., f(r) = 
-exp[- r/r,], with 7, = 22 ms for the data in Fig. 5d. For 
each instance of the spike waveform, we now calculate the 
difference between the actual projection (Eq. 8) and the 
modeled projection, i.e., PC”) - f(r,,); the final distribution 
of these differences is nearly Gaussian (Fig. 5~3). 

Optimal jiltering of spike waveforms 

We now consider the implications of background variabil- 
ity on the classification of spike waveforms from different 
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single units. Our goal is to construct a filter that accentuates 
the differences among a set of mean single-unit waveforms 
( “signal” ) in the presence of background activity 
( “noise”). We first describe the statistical properties of a 
set of average single-unit waveforms, and then use these 
properties along with the properties of the background vari- 
ability to construct this linear filter. 
VARIABILITY AMONG SINGLE-UNIT RESIDUALS. We consider 
a sample of mean single-unit waveforms, denoted W’“‘, 
where m = 1, . . . . M labels the mean single unit; in the 
present case A4 = 44 (22 stereotrode waveform pairs) and 
each mean waveform is the average of 2,000-5,000 in- 
stances that were acquired as segments. Because we are 
interested in detecting differences among single-unit wave- 
forms, our subsequent analysis is in terms of the difference 
between a given mean single-unit waveform and the average 
across all such units (Fig. 6a), denoted 6W’“‘, where 
swh) = w(m) _ (w(m)) and the averaging is over the M 
single units. 

The directions of maximum variability among the mean 
single-unit waveform are given by the principal components 
of the correlation matrix of the 6W’“’ ( Abeles and Goldstein 
1977). We denote this matrix C,, where 

c, = (SWSW’) (10) 

is of rank T (recall that T = 32 and T < M) and the average 
is over the A4 single units. We observe that the first component 
is similar to the mean waveform and captures variability in the 
amplitude of the waveform for different single units (Fig. 6~). 
Higher-order components do not have simple interpretations, 
but their largest amplitudes occur in the vicinity of the peak 
of the spike waveform (Fig. 6u). The ordered spectrum of 
the corresponding eigenvalues is seen to fall off rapidly with 
component number (Fig. 6b), such that 95% of the variability 

RG. 5. Systematic variability of spike 
waveform as a function of the interspike 
interval (ISI). a: stereotrode waveforms 
observed a short interval after a preceding 
spike and a long interval after a spike. Note 
that the short-interval waveform is longer 
and decreased in amplitude. b: distribution 
of projections of each recorded waveform 
along the direction ?, - vs, defined by 
the difference between the long- and short- 
interval waveforms in a (see text), as a 
function of the ISI. Note the evolution in 
shape as a function of the ISI. c and d: 
change in waveform for a 2nd single unit. 
Solid line through the data: fitted model of 
the projection to a scalar function of time 
(Eq. 8). e : integrated distribution of pro- 
jections before and after the subtraction of 
the model. 

between different single-unit waveforms is accounted for by 
the four dominant modes shown in Fig. 6u. This result shows 
that the difference between single units is defined in a subspace 
whose dimension is substantially lower’that that of the original 
T-dimensional space of the waveforms. 
WIENER FILTERING. The space spanned by the principal 
components of the single units, described above, is a natural 
basis for the representation of spike waveforms. Following 
Wiener (Bozic 1994), we seek the optimal linear filter that 
minimizes the mean square difference between each instance 
of a spike waveform residual, i.e., a SV’“‘, and the mean 
single-unit residual that best models that waveform, i.e., one 
of the SWcm)s. We model each instance in terms of the 
underlying single unit plus noise, i.e. 

6~00 = 6w(m) + vg) (11) 

where V$‘) = { vz)( t) } Ll is the additive background activity 
associated with the nth instance of the spike waveform. The 
filter, denoted F, is found by minimizing an error, E, defined 
by 

E = (IF&‘- 6Wl’) = (IF(6W + V,) - SW[*) (12) 

where F is a T by T matrix. The average in Eq. 12 is com- 
puted over the ensemble of mean waveforms, SW, as well 
as the ensemble of noise, Vs. The filter matrix is found by 
minimizing the error with respect to F, which gives3 

F = C&C, + C&l (13) 

3The average square error is (Eq. 12) E = ([F(SW + V,) - 
SW][F(SW + V,) - aWIT) = FCwFT + FC,F’ - C,F’ - FC, - C,,r, 
where the correlation matrices Ca and C, are given by Eq. 10 and 14, 
respectively, and we note that the averages (V&W’) and (6W Vi) are 0 
under the assumption that the background activity is uncorrelated with the 
presence of a spike. The filter is found by minimizing E with respect to 
the filter matrix F, i.e., setting 8EhYFT = 0, from which we get Eq. 13. 
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where C, is given by 5’~. 10 and C, is the correlation matrix 
of the background voltage waveforms, i.e., 

where the average is over all instances of background activ- 
ity (Figs. 2 and 3). The form of F is considerably simplified 
when the correlation matrix for the mean single-unit residu- 
als and for the background waveforms diagonalize in the 
same basis (Eq. 9). In this limit the filter has only diagonal 
elements in the principal component basis for the mean sin- 
gle-unit residuals, 4 i.e. 

where ‘12T is the rotation matrix (Es. 7) constructed from the 
principal components of the single-unit residuals, Xi is the 
variance for the cvth component of these residuals, ai is the 
variance for the background waveforms, and S,,,r is the Kro- 
neker delta function. 

The correlation matrix for the background activity (Figs. 
2 and 4) was calculated as above (Es. 14) and rotated (Es. 
7) into the basis of the mean single-unit residuals. We ob- 
serve that this matrix, 6’C&, is nearly diagonal. The vari- 
ance terms, ai, fall off only slowly with increasing compo- 
nent number (Fig. 6b). Details aside, the essential feature 
is that the variance of the single-unit residuals decreases 
much more rapidly than that for the noise, such that signal- 
to-noise ratio, Xila i, exceeds 1 for only for the first six 
components. The coefficients for the Wiener filter thus ap- 
proach a value of 1 for the first few terms and decrease 
rapidly for the high-order terms (Fig. 6b). In the limit of 
ZQ. 13, the eigenvectors of the filter matrix are equal to 
those of the correlation matrix CS (Fig. 6a) ; an “exact” 
calculation of F yields essentially identical results.5 Last, it 
is instructive to compare instances of the same single-unit 
waveform before and after filtering, i.e., V@) = SV’“) + (V) 
versus V$i!ered = FSV'") + (V) (Fig. 6~). Note that the sharp 
features of the peak of the spike waveforms are maintained, 
but that “noise” across all frequency bands is suppressed; 
this is the essential advantage of filtering in the basis of the 
principal components. 

Segmentation length 

The prescription for an optimal filter of the spike wave- 
form is one practical consequence of our analysis of spike 
waveform variability. A second practical aspect concerns the 
length of the segmented waveform, which we took to be 
relatively long in the studies above. A long record will pro- 

4 The filter in the basis of the principal components of the single-unit 
residuals SW (m) is found by applying the rotation matrix U to the filter 
matrix F (Eq. 131, i.e., oTFU = UTC&Cw + C&-W = oTc,(oo-‘)(c, + 
c,>-y m-‘)‘U = oTAC@( OTC, 0 + OTC&) -I, where we use the fact 
that U is unitary, i.e., UUT = 1. When CB as well as Cw are diagonalized 
by the same rotation, so that (Eq. 7) ir’C& = Ai as well as UT& 0 = 
AL the rotated filter matrix is diagonal, i.e., oT Fir = A&( A$ + 
A g) -‘, with elements given by Eq. 15. 

5 The matrix for the background activity CB is close to singular and 
thus the calculation of the F is il l conditioned. We sidestep this issue 
by adding a diagonal term ~1 to the denominator in Eq. 14; good 
convergence is found, with E roughly 0.1 times the mean size of the 
elements of Cg. 
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FIG. 6. Variability among a set of single-unit waveforms. a: average 
waveform from a set of 44 single-unit waveforms (top) and the 1st 4 
principal components of the residual single-unit waveforms (bottom). b: 
ordered eigenvalue spectrum for the single-unit waveforms and the back- 
ground activity projected into the basis of the spike waveforms (left scale). 
The 2 curves cross near mode 6; after this point noise dominates the wave- 
form variability. Bottom trace : optimum (Wiener) filter (Eq. 12). The -3- 
dB point occurs near mode 6, corresponding to the crossing of the 2 eigen- 
value spectra; by mode 9 the amplitude of the filter has fallen an order of 
magnitude. c: Illustration of the optimum filter applied to spike waveforms 
from the same single unit. In this example the noise level is -4 times the 
typical level. 

vide maximum information about a particular instance of a 
waveform. On the other hand, too long a record may lead 
to the presence multiple spikes in the segment, which may 
confound the sorting process. We use a measure of the infor- 
mation about the mean waveform contained in single-unit 
waveforms in the presence of noise, i.e., the mutual entropy 
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between the observed waveform and the underlying ensem- 
ble of waveforms, as an objective measure for choosing the 
desired record length. 

The mutual entropy between the observed waveforms, SV, 
and the underlying mean waveform, 6W, is defined as 

S(6V, SW) = S(N) - S(6VI6W) (16) 

where SV = SW + V,, as above (Eq. I1 ), and SW and V, 
will be assumed to have Gaussian distributions with zero 
mean and convariances C, and CB, respectively. We use 
this assumption so as to be able to carry out a calculation 
based on a realistic amount of data. Note that successive 
samples must be assumed to be independent for this calcula- 
tion. As we have illustrated (Fig. 5)) this is not completely 
true; however, to estimate the mutual information we make 
this assumption. For a multivariate distribution of dimension 
T with covariance matrix C, the entropy is given by S = 
(T/2) log2 (27@ + (l/2) log2 [det(C)] in units of 
bits (Cover and Thomas 1991). Noting further that 
S(SV 16W) = S(V,) and Cv = C, + C, (Eq. 10 and I4), 
the mutual entropy (Eq. 16) can be written as 

S(bV, SW) = ; log* [det (C, + C&C,‘] (17) 

In the special case when C, and CB diagonalize in the same 
basis, Eq. 18 reduces to S( SV, SW) 21 ( l/2) & log, 
( 1 + x2/a:) and is seen to contain significant contributions 
only from those dimensions where the variability among the 
underlying mean waveforms exceeds that of the background, 
i.e., dimensions for which the ratio xi/a: > 1. 

We calculated the mutual entropy as a function of the 
length of the segmented record (Eq. 17) ; the position of the 
record relative to peak of the spike waveform was adjusted 
to maximize S. We find that the mutual entropy appears to 
be close to its asymptotic value for segments with T = 32 
samples, as used to construct Cw (Fig. 7). When the segment 
is decreased to 14 contiguous samples, about a factor of 2 
in length, the mutual entropy is reduced by only 1 bit. In- 
creasing the relative amplitude of the background noise, of 
course, decreases the entropy (Fig. 7). 

DISCUSSION 

Spike waveforms have at least two sources of variability. 
First, there are signal sources that persist in the absence of 
spiking in the observed neuron. To a good approximation, 
these sources of signal are random with respect to the spiking 
of the observed neuron and occur at all frequencies, although 
the power decreases with increasing frequency. Second, 
there are contributions to waveform variability that are non- 
random. One such contribution depends on the time since 
the previous action potential and is likely to result from 
biophysical changes intrinsic to the observed neuron. 

Background variability 

The variability of the spike residuals is nearly identical 
with that of background activity (Fig. 2, a and b). This 
suggests that the presence of a spike does not change the 
average properties of the noise, such as could occur if the 

Noise Level 
Xl 

0 10 20 30 

Number of A/D Samples 

FIG. 7. Entropy of the a set of single-unit waveforms, S( bV, 6W ) (Eq. 
17) as a function of the length of the segment. Each segment was shifted 
relative to the peak of the waveform so that the entropy was a maximum. 
Note that the entropy rises linearly and then rolls over between 5 and 10 
samples toward an asymptotic value. Top curve is computed for the data 
in this work. Bottom 2 curves are computed for noise levels 2 and 4 times 
those observed. 

mean activity in a region was modulated by the spike. Thus 
the background variability appears as an additive noise. 

The power spectrum for the residuals, or background, is 
not white but rolls off at high frequencies (Fig. 2, a and b). 
This shows that there are significant temporal correlations 
in the spike residuals. Further, the rolloff is slower than that 
for the spectrum of the spike waveforms. These spectra im- 
ply that there are sources of noise other than somatic spikes. 
Under the assumption that the background consists solely of 
somatic spikes from an ensemble of neurons, whose arrival 
times are Poisson distributed on average, the spectrum of 
the background signal would resemble that of the spike 
waveform. The observed excess of power at high frequencies 
in the spectrum of the background activity may result from 
axons of passage6 or fast synaptic currents (Farrant et al. 
1994). 

We observed that the high-frequency aspect of the vari- 
ability decayed on a length scale comparable with that be- 
tween individual wires on the strereotrode pair, - 10 pm 
(Fig. 2, c and d). This result is consistent with the measured 
decrement of the amplitude of the extracellular signal with 
distance for cells in tissue culture, for which the decrement 
is typically exponential with a decay constant of -5 pm 

6 The power spectrum of propagating action potentials varies as S(f) a 
f4 at high frequncies, whereas that for nonpropagating action potentials 
varies as S(f) a f *. Thus the presence of propagating action potentials in 
the background activity will boost the high-frequency end of the power 
spectrum relative to that of mean waveforms, which presumably correspond 
to spikes at or near somata. 
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(Tank and Kleinfeld 1986). However, the shape of the extra- 
cellular signal and the exact form of the decay with distance 
depended on the cell type and geometry. 

The principal component analysis shows that there is a 
strong anisotropy in the distribution of spike residuals (Fig. 
4). Thus the variability between spike waveforms is much 
larger along the directions defined by the low principal com- 
ponents than along those defined by the high-order compo- 
nents. Additional anisotropy is introduced by the observed 
systematic variability in spike waveform as a function of the 
ISIS (Fig. 5). 

A second aspect of the background variability is the pres- 
ence of 300- to 500-Hz peaks in the spectrum for brief 
epochs of time, i.e,. tens of milliseconds (Fig. 4). The elec- 
trical activity associated with these peaks is coherent be- 
tween wires on the stereotrode pair, i.e., on the lo-pm scale, 
but incoherent between different stereotrodes, i.e., on the l- 
mm scale (data not shown). One possibility is that intemeu- 
rons fire trains near their maximal rates for 2 IO-ms epochs, 
for which rhythmic spiking is expected (Gray and McCor- 
mick 1996; McCormick et al. 1985 ) . An alternate possibility 
is that small groups of interneurons fire rhythmically and 
synchronously for such epochs, although individual neurons 
in the group may fire at relatively low rates. Last, this aspect 
of the background variability is suppressed when animals 
are placed under halothane (2%) anesthesia (unpublished 
results), not unlike the decrease in the variability of spike 
arrival times in aroused versus anesthetized or sleeping ani- 
mals (Paisley and Summerlee 1984). 

Spike waveform variability 

Our results show that for roughly half of the single units 
in vibrissa cortex, the individual waveforms evolve as a 
function of the time since the preceding spike, and reach 
their asymptotic shape for an IS1 of 2 100 ms (Fig. 5). This 
change leads to non-Gaussian distribution of amplitudes in 
the space of waveforms. Analogous changes in shape are 
seen in intracellular records for neurons in slice preparations 
and are particularly strong for cells that produce bursts of 
spikes, such as layer 5 pyramidal neurons (Connors and 
Gutnick 1990; McCormick et al. 1985 ) . However, we often 
see ISI-dependent changes in waveforms that do not exhibit 
bursting (Fig. 5 d) . 

An important aspect of our analysis is that the change in 
waveform can be modeled as a linear superposition of two 
vectors that is parameterized by a single function of time 
(Fig. 5e). Our analysis suggests that, in principal, changes 
in the state of a neuron may be inferred from systematic 
variations in the extracellular signal. It remains to be seen 
whether such changes in cortical neurons may be related to 
behaviorally or computationally relevant events. 

Implications for spike sorting 

ANISOTROPIC VARIABILITY. Our results suggest the impor- 
tance of correctly accounting for the variability between 
spike waveforms. In particular, algorithms based on the as- 
sumption of an isotropic variability and a Gaussian distribu- 
tion of amplitudes (Lewicki 1994) are likely to sort a given 
single-unit cluster into multiple clusters. This problem may 

be alleviated by directly modeling the background variabil- 
ity, which is nonstationary (Fig. 3), and the intrinsic wave- 
form variability, such as that associated with the IS1 (Fig. 
5). A second possibility is to use a hierarchical clustering 
scheme to account for the anisotropic, non-Gaussian vari- 
ability (Fee et al. 1996). Application of the latter method to 
multiunit signals collected from rat primary somatosensory 
cortex has allowed three or more single units to routinely 
be classified from a single stereotrode (Fee et al. 1995). 
FILTERING. The directions of variability within a cluster 
that do not lie along the significant directions of variability 
between different single-unit clusters do not contribute to 
the discrimination of spike waveforms. Rather these direc- 
tions only contribute to the total variance of a cluster. Thus 
the variability in a small number of dimensions contributes 
to our ability to discriminate between different units. The 
Wiener filter we describe (Eq. 13; Fig. 6b) preferentially 
suppresses the variability in directions that are orthogonal 
to those between different single-unit waveforms. 

The application of the Wiener filter (Eq. 9- 13) to an 
instance of a spike waveform, Vcn), follows standard proce- 
dures (Bozic 1979). 1) Subtract the mean single-unit wave- 
form, (W ), from the waveform to construct the residual, 
SV@) 2) Multiply the residual by the filter to form FN’“‘. 
These vectors may then be clustered, as described in Fee et 
al. ( 1996). Recall that relatively few dimensions account 
for the major fraction of spike waveform variability. The 
filter may be approximated by keeping only the components 
whose amplitude is significantly greater than zero, e.g., the 
first 10 components for the filter in Fig. 6b, so that the filtered 
residuals may be sorted in a relatively low dimensional space 
of principal components.‘T8 We found that this filter typically 
reduced the total variance of a cluster by a factor of -2 
(Fig. 6~). 

The eigenvalues of the filter (Fig. 6a) are a basis set for 
the representation of any spike waveform residual. In this 
sense, the filtration process we describe builds on the pro- 
gram of Abeles and Goldstein ( 1977) ( see also Gerstein et 
al. 1983; Gozani and Miller 1994; Roberts and Hartline 
1975; Stein et al. 1979) to define an optimum set of functions 
for the sorting of spike waveforms. Thus different spike 
waveforms found in different regions of the brain may re- 
quire different filters. Furthermore, the filter coefficients de- 
pend on the signal-to-noise ratio (Eq. 14) in a given re- 
cording situation. 
SEGMENT LENGTH. We observe that most of the variability 
between single-unit waveforms occurs near the peak of the 
spike waveform (Fig. 6a), a segment that is -0.5 ms in 
duration. The present analysis provides a quantitative mea- 
sure of gain in discriminability among a set of single-unit 
spike waveforms that is afforded by the use of longer seg- 
ments of data. Although longer record lengths certainly im- 
prove the discriminability between spike waveforms and do 

’ An alternate way to view the filter is in terms of the distance metric 
FTF; the metric weights the scalar distance between two waveforms, d, 
and d2, according to dT(FTF)d2. 

’ A recent application of Wiener filtering to construct a matched filter 
for individual spike trains (Gozani and Miller 1994) considered filtering 
in the Fourier frequency domain, rather than in the domain of principal 
components; in that case there is no reduction in the effective dimentionality 
of the space of waveform residuals. 
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not present practical problems as far as storage or computa- 
tion, they can confound the ability to sort extracellular sig- 
nals that contain many overlapping waveforms. Our results 
suggest that records lengths of 1.3 ms afford only a l-bit 
improvement in the mutual entropy over a record length half 
as long (Fig. 7 ). Thus records containing only the peak 
region of the waveform may be adequate for sorting spike 
waveforms, as previously observed (Lewicki 1994). 
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