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SUMMARY AND CONCLUSIONS

1. Here we study the variability in extracellular records of action
potentials. Our work is motivated, in part, by the need to construct
effective algorithms to classify single-unit waveforms from
multiunit recordings.

2. We used microwire electrode pairs (stereotrodes) to record
from primary somatosensory cortex of awake, behaving rat. Our
data consist of continuous records of extracellular activity and
segmented records of extracellular spikes. Spectral and principal
component techniques are used to analyze mean single-unit wave-
forms, the variability between different instances of a single-unit
waveform, and the underlying background activity.

3. The spectrum of the variability between different instances
of a single-unit waveforms is not white, and falls off above 1 kHz
with a frequency dependence of roughly f ~>. This spectrum is
different from that of the mean spike waveforms, which falls off
roughly as f ~%, but is essentially identical with the spectrum of
background activity. The spatial coherence of the variability on
the 10-um scale also falls off at high frequencies.

4. The variability between different instances of a single-unit
waveform is dominated by a relatively small number of principal
components. As a consequence, there is a large anisotropy in the
cluster of the spike waveforms.

5. The background noise cannot be.represented as a stationary
Gaussian random process. In particular, we observed that the spec-
trum changes significantly between successive 20-ms intervals.
Furthermore, the total power in the background activity exhibits
larger fluctuations than is consistent with a stationary Gaussian
random process.

6. Roughly half of the single-unit spike waveforms exhibit sys-
tematic changes as a function of the interspike interval. Although
this results in a non-Gaussian distribution in the space of wave-
forms, the distribution can be modeled by a scalar function of the
interspike interval.

7. We use a set of 44 mean single-unit waveforms to define the
space of differences between spike waveforms. This characteriza-
tion, together with that of the background activity, is used to con-
struct a filter that optimizes the detection of differences between
single-unit waveforms. Further, an information theoretic measure
is defined that characterizes the detectability.

INTRODUCTION

Much of the study of neuronal activity relies on the infer-
ence of the spiking output from individual neurons on the
basis of measurements of their extracellular signals. How-
ever, extracellular recordings of brain activity often contain
signals from more than one neuron. Because neighboring
neurons often have quite different physiological properties,
it is usually desirable to discriminate the signal from one or
more individual neurons that contribute to the signal. This
discrimination is based on differences in the details of the
extracellular action potential waveforms as a consequence
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of the type and spatial distribution of currents in the cell
and as a function of the position and geometry of the elec-
trode. These differences provide a means to classify different
waveforms as belonging to the same neuron. However, extra-
cellular sources of noise and intrinsic spike-to-spike variabil-
ity obscure the classification process.

A priori, we expect that there are at least two sources of
variability that may contribute to the observed shape of the
extracellular waveform of a given neuron. The first origi-
nates in extracellular currents from other cells. Every part
of a neuron, e.g., axons, dendrites, and synapses, is capable
of generating currents (Llinas 1988), so there are many
possible microscopic sources of noise. If these sources are
uncorrelated with the observed spike, at least on the millisec-
ond time scale, this contribution may be viewed as additive
noise. A second source of variability may be associated with
systematic changes in the spike waveform. For example,
changes in the height and width of the action potential have
been observed in successive spikes of a burst, as seen in
some layer 5 pyramidal neurons in vitro (McCormick et al.
1985).

Here we analyze extracellular records from layers 2/3
through layer 6 of primary somatosensory vibrissa cortex in
rat. We ask the following questions. /) What is the spectral
composition of the spike waveform variability and the back-
ground neuronal activity? 2) Is the spectral composition sta-
tionary across time? 3) Is the amplitude distribution of the
variability Gaussian? In particular, systematic variation in
the shape of the spike waveform may lead to an apparent
non-Gaussian distribution. 4) Can we use these results to
construct an optimal filter for the detection of differences
between waveforms from different single units?

Our motivation is twofold. On the one hand, we suggest
that systematic patterns of variability in the extracellular
signal may be useful for the in vivo classification of neuronal
type. On the other hand, the decomposition of multiunit
extracellular signals into contributions from individual units
is fundamentally dependent on the statistics of waveform
variability both extrinsic and intrinsic to the neuron. We
suggest that these statistics have not been properly accounted
for in past work.

Preliminary accounts of this work have appeared (Mitra
et al. 1995).

METHODS

Electrophysiology

We recorded regular- and fast-spiking units (Simons 1978) from
layers 2 through 6 of the vibrissal area of primary somatosensory
cortex of Long-Evans rats. Four independently adjustable stereo-
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electrodes (McNaughton et al. 1983) were implanted through the
intact dura mater into neocortex. In brief, the electrodes were con-
structed from a twisted pair of 25-mm polyamide-coated tungsten
wires (California Fine Wire, Grover City, CA). The ends of the
electrodes were cut with sharp scissors at a 45° angle and gold-
plated. Electrode impedances in physiological saline were typically
0.1 MQ at 1 kHz for both reactive and resistive components, and
electrodes produced a Johnson noise of ~30 nVyHz over the fre-
quency band of interest. Signals were buffered near the head of
the animal with field effect transistors (NB Labs, Denville, TX),
amplified (X 10*), band-pass filtered between 300 Hz (5-pole Bes-
sel high-pass filter) and 10 kHz (8-pole constant-phase low-pass
filter; Frequency Devices, Haverhill, MA), and digitized at 25
kHz with a 12-bit digital-to-analog converter (no. DT2821; Data
Translation, Marlboro, MA) that had an effective resolution of
10 bits. The acquisition was controlled by the ‘‘Discovery’’ data
acquisition program (Datawave Technologies, Longmont, CO).
The care and experimental manipulation of our animals were in
strict accord with guidelines from the National Institutes of Health
(1985) and have been reviewed and approved by the Institutional
Animal Care and Use Committee at Bell Laboratories.

Data acquisition

Data were acquired in either of two modes: continuous acquisition
mode or segmented acquisition mode. In continuous mode, the digitized
voltage signals from stereotrode pairs are continuously recorded to disk.
The signals for each pair are denoted V,(¢) and V, (), where x and y
label the wire and ¢ is a discrete variable; an example from a particular
pair is shown in Fig. la. Sections of data containing spikes were
selected with the use of a threshold crossing criterion. We extracted a
segment of 64 samples with the peak of the spike centered at sample
11 (see Fig. 1a, vertical lines); each segment defines a pair of vectors
denoted V¥ = {V,(t + 7)}i=2% and VI = {V,(t + 7,)}/= %, where
T, is the time of the peak of the nth instance of the waveform and T
= 64. Spike waveforms were sorted on the basis of the amplitude at
the peak of the waveform on each wire, i.e., peak {V{”} versus peak
{V\"} (Fig. la, inset). A small sample of the sorted waveforms is
shown in Fig. 15 and the autocorrelation function of the arrival times
for the entire set of sorted waveforms is shown in Fig. 1¢. The autocor-
relation shows a clear suppression of spikes at short intervals, consistent
with the spike train of a single unit. For the purposes of our analysis
of waveform variability, we include only extracellular records with one
or two well-isolated single units.

The difference between a particular instance of a spike waveform
and the mean waveform is defined as a spike residual. We calculate
the residuals for all sorted waveforms as follows. /) The segmented
spike waveforms (see above) are resampled to place the center of mass
of their peak at sample 11 (Fee et al. 1996) and the mean waveform
is calculated as the average of the centered, segmented waveforms.
This procedure removes the dominant source of jitter in computing the
average waveform. 2) The mean waveform is resampled by cubic spline
interpolation to generate a template with 0.8-us resolution. Temporally
shifted versions of the mean waveform are generated by shifting the
template in 0.8-us steps and resampling at the 40-us sample period.
We thus generate a set of 50 mean waveforms, each shifted in time
by 0.8 us, that span the 40-us sample period. 3) Each of the shifted
means is subtracted from the spike waveform, and the residual with
the minimum total squared error is kept; a sample of spike residuals
and their amplitude distribution is shown in Fig. 1, d and e, respectively.
In addition, a segment of 64 samples of the continuous record in the
interval between 4.0 and 1.44 ms before the onset of each spike wave-
form is extracted for the purpose of analyzing background activity.

In segmented acquisition mode, a threshold crossing of either signal
of the stereotrode pair triggers the acquisition of the spike waveforms
on both wires, as described in Fee et al. (1996). In contrast to the case
of continuous acquisition, only 32 samples of the waveform from each
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of the two wires of the electrode may be saved. The voltage sample
with the largest amplitude (waveform peak) is set as the fifth sample,
the data are recentered as described in Fee et al. (1996), and the
companion waveform is shifted in register; a time stamp saved with
each waveform indicates the time of the waveform peak with 100-us
resolution. Segmented acquisition was used to obtain the relatively large
number of waveforms required for our results on optimal filtering; in
this case as many as four single units per wire were isolated, as de-
scribed in Fee et al. (1996).

Spectral analysis

We used the direct multitaper estimation techniques of Thomson
(1982) to calculate the power spectral density, denoted S,,(f),
and the coherence, denoted R,,(f), from the measured voltage
signals. These spectral measures are defined by

Su(f) = (V% (1)
and
(V¥
Ry =T 2
SRR T AY AR @

where |V|? = VV*and ( - - - ) denotes an average over all tapers,
ie.

(n,k)ﬁ(n,k) 3)

M=
M =
<

where V@0 = (Y@ f )}Jf:’;o is the discrete Fourier transform of
V® multiplied by the kth window function, or taper, W, =
{(wi(©)}22% (see below), ie., VOO(f) = S, expli2nft]
wi()V®(1), N is the number of instances of the waveform (~10°
to 10* in the present work), and K is the number of tapers (2 or
3 in the present work). The Nyquist frequency is fy = (2t5)7"
where 5 is the time per sample (40 us in the present work). For
the spike residuals, the above formula holds with V™ replaced
with 6V where §V™ = V™ — (V).

The use of multiple tapers yields K independent estimates of the
spectrum, which are averaged to form a final spectrum (Eq. 3).
The frequency resolution of the spectrum, defined in terms of half-
width of the spectral bands, A f; satisfies

Q2-Af)(T't)=K+1 4)

For spike waveforms acquired in continuous mode (7T = 64), Af ~
600 Hz. Note that additional smoothing, but no change in bandwidth,
is obtained by averaging the spectra from multiple instances (Eq. 3).
The multitaper methods offer advantages (Percival and Walden
1993) that are particularly critical to the estimation of spectra for
the mean spike waveforms. In particular /) the spectra have a large
dynamic range of amplitudes. The sequences used to construct the
tapers, wy, are an orthogonal set of functions (discrete prolate
spheroidal sequences ) that minimize the leakage of power between
frequency bands. 2) The segmented spike waveforms contain a
peak that, by construction, occurs at one end of the record. The
use of multiple tapers, even two, provides a relatively balanced
weight across all regions of a record, as opposed to the preferential
weight given to the center of a record with only a single taper.

Principal components

The set of waveform vectors V™ exists in a 7-dimensional space.
We consider the directions, known as the principal components,
that minimize the covariance between the projections of vectors
(Ahmed and Rao 1975; Golub and Van Loan 1989). The correla-
tion or covariance matrix is denoted C, where

C =(VVT" (5)
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FIG. 1. Representative stereotrode data. a: volt-
age signals from each of the 2 microwires, denoted
- V,and V,, as a function of time. Vertical lines
segment a region that corresponds to a spike wave-
form. Inset: distribution of spike waveforms as a
function of the maximum value of V{"(#) and

Time

Vi"(r), for all instances of the waveforms (N =
2,600). Only those waveforms within the dashed
box are kept. Note that the distribution of points
in the projection for this figure appears artificially
; 3 broad. b: sample of 100 sorted spike waveforms
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from the data in a. Note the high degree of overlap
among all waveforms. c: autocorrelation function
of the spike arrival times for all instances of the
waveforms. The absence of any amplitude at equal
times implies that all of the waveforms could origi-
nate from the same single unit. d: distribution of
residuals as a function of time for each microwire.
These residuals are calculated by subtracting the
mean waveform from each instance of the spike;
50 waveforms were used for this calculation. e:
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is a real symmetrical T by T matrix with elements C(z, t') =
(V(£)V(1')); the average is over all instances and satisfies N >
T. The principal components, denoted U, with @ = 1, ... T, are
the eigenvectors of C, i.e.

CU, = AlU, (6)
where \Z is the ath eigenvalue (variance); the order of the eigen-
vectors is chosen so that the magnitude of the eigenvalues decrease
monotonically. From a different perspective, the U,s are the col-
umns of a unitary matrix U = [U,, Uy, .. ., Ur] that diagonalizes
C, so that

UTCU = A? )
where A’ is a diagonal matrix with diagonal elements A3, A3, ...,
A%, Last, the T-dimensional vectors V™ and UTV™ form a trans-
form pair; the former is the representation of the waveform in time
and the latter is the representation in the space of principal compo-

nents. Identical considerations hold with V"' replaced by 6V,
etc.

For the special case in which the waveforms are translationally
invariant in time, so that C(¢, t') = C(¢t — t'), the diagonal
elements of the correlation matrix form the Fourier transform of
the power spectrum, truncated to T points in time, and the eigenvec-
tors can be calculated solely from the spectral properties of the
waveforms. For the further limit of an infinite length time series,
i.e., T — oo, the principal components are sinusoids and the above
transforms (Eq. 6 and 7) reduce to Fourier transforms.

RESULTS
Spectral properties

We consider first the spectral density (Eq. /) of the spike
waveforms and associated variability, and focus on 2,600
spike waveforms recorded on one wire for the regular-spik-
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FIG. 2. Spectral analysis of spike waveforms
and variability. a: power spectral density for a regu-
lar-spiking unit (inset), S, (f). Note the close cor-
respondence between the power in the spike residu-
als and that in background activity taken from the
same continuous record. b: power spectral density
for a fast-spiking unit (inset). The frequency de-
pendence of the electronic noise is essentially the
frequency response of the electronics. ¢ and d:

Electronic Noise
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ing unit presented in Fig. 1. We observed that the spectral
density of the mean spike waveform has a broad maximum
at low frequencies (f ~ 500 Hz) and falls off monotonically
above ~1 kHz roughly as S, (f) « f* (Fig. 2a). The
average spectrum of spike residuals has a smaller amplitude
at low frequencies and falls off with a frequency dependence
of S (f) = f 2. The average spectral density of the back-
ground activity is essentially identical to that of the spike
residuals. Last, the spectrum of the filtered electronic noise
is lower in amplitude than any of our signals (Fig. 2b). The
electrical noise is white over the frequency range in question
(METHODS ), so that the frequency dependence of the filtered
spectrum is determined by the filters; the spectral properties
of the spike residuals are thus minimally affected by the
electronic filters.

The spectral density observed for the average waveform
of a fast-spiking unit is shown in Fig. 2b. As in the case of
the regular-spiking unit, the spectral density falls off mono-
tonically at frequencies above ~2 kHz, although with a
steeper frequency dependence than that observed for regular-
spiking units. Further, the spike residuals and background
activity have similar spectral properties to those shown in
Fig. 2a. In general, the above results (Fig. 2, a and b) are
characteristic of those found for all regular-spiking units
(10) and fast-spiking units (5) for which we performed
spectral analysis.

Clues to the origin of waveform variability come from
the coherence (Eg. 2) of the signals across the stereotrode
pair. A source of variability common to both wires of the
stereotrode would lead to a coherence of 1, whereas an inde-
pendent noise source on each wire would result in a mea-
sured coherence close to 0, or more precisely ~ 1072 for
our system.' The two signals from the stereotrodes show a

' The limiting coherence is given by the inverse of the square root of the
number of independent spectral estimates. The latter number is equal to the
number of tapers, K, times the number of samples, N, so that for random
data one would have R, (f) = “IKM = “W2-2,600 = 1.4-1072.

high degree of correlation at frequencies <3 kHz, i.e.,
R,y (f) ~ 0.8, which falls to R,,(f) < 0.4 at higher frequen-
cies (Fig. 2, c and d). This implies that the high-frequency
sources of variability are more localized on the scale of the
separation between the stereotrode wires, 25 ym, than are
the low-frequency sources.

The nonwhite spectrum of the waveform residuals implies
a degree of correlation between the individual samples of the
residuals. The structure of these correlations is revealed by
examining the principal components of the covariance matrix
of the spike residuals. The eigenvalues and eigenvectors were
calculated (Egs. 5 and 6) for the covariance matrix of the 2,600
spike residuals for the single unit used in the spectral analysis
of Fig. 2a (Fig. 3a). The histogram of sorted eigenvalues is
seen to fall off rapidly as a function of component number,
with three to four dimensions accounting for half of the total
variance (Fig. 3a, @). Further, the variance along the largest
principal component of the spike residuals is typically >3
orders of magnitude larger than the variance along the smallest
principal component. In contrast to the spectrum for spike
waveforms, the sorted spectrum for isotropically distributed
Gaussian noise is relatively flat (P. P. Mitra and A. M. Sen-
gupta, unpublished result), with roughly 20 dimensions ac-
counting for half of the total variance and a ratio of largest to
smallest principal component of ~2 (Fig. 3a). All single-
unit clusters we have observed yield a similarly anisotropic
eigenvalue spectrum of the covariance matrix. These results
imply that the distribution of spike waveform residuals is highly
anisotropic in the 64-dimensional space of the residuals.

The eigenvectors associated with the first five principal
components of the spike residual waveforms for are shown
in Fig. 3b. The components are dominated by frequencies
that are low compared with the Nyquist frequency, (2t5) ™' =
12.5 kHz, which indicates the presence of a large degree
of temporal correlation between the waveform residuals at
different sample times. Last, the correlation matrix for the
spike waveforms is not translationally invariant in time be-
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FIG. 3. Principal component analysis of spike waveform residuals and background activity. a: eigenvalue spectrum for

the spike residuals (@) and the background activity (

), sorted by amplitude. The nearly horizontal line is the spectrum

for white noise, normalized so its integral is equal to that for the residuals. b: 1st 5 eigenmodes or principal components of
the spike residuals. Note the mixture of frequencies in all modes. Dashed line: mean spike waveform. c: 1st 5 eigenmodes
for the background activity. Dotted lines: eigenmodes calculated from the power spectrum; the close correspondence between

the 2 shows that the response is stationary.

cause some variability is locked in time to the spike wave-
form. Thus the eigenvectors are not consistent with those of
a stationary Gaussian signal (Fig. 3b).

The spectrum of the background activity, like that of the
spike waveform residuals, is also nonwhite (Fig. 2, a and b).
As in the case of the spike waveforms, the sorted eigenvalue
spectrum falls off rapidly as a function of component number;
in fact, the two spectra are essential identical for the higher
principal components (Fig. 3a). On the other hand, the seg-
mented waveforms are expected to be translationally invariant
for the case of background activity in that there is no relation
between the temporal location of excised regions and features
in the data record. For this case the eigenvectors can be calcu-
lated solely from the power spectrum (METHODS ). We observed
a good match between the eigenvectors calculated directly from
the correlation matrix of the background activity and those
calculated indirectly from the power spectrum of the activity
(Fig. 3¢). This comparison acts as a self-consistency check on
our numerical methods and demonstrates that the background
activity is not locked to our sample window.

Time dependence

Up to now we have considered the average properties of
the spike waveform and the variability. We now examine
the time dependence of the background activity to determine
whether or not the variability can be modeled as a stationary
Gaussian process. Three consecutive 20-ms segments of the
voltage signal on one wire of the stereotrode during an epoch
in which no spikes are observed are shown in Fig. 4a. Quali-
tatively, the signal appears quite different between segments;
this difference is highlighted through a comparison of the
spectra for each segment with each other and with the aver-
age spectrum for 4,000 such segments (Fig. 4b). In particu-
lar, the spectra for the 20-ms segments have substantial peaks
in the subkilohertz frequency range, whereas the average

spectrum is smooth. In general, significant spectral peaks
occur in most of the 4,000 segments recorded.

As a second measure of nonstationarity, we consider
changes in total power, as opposed to changes in spectral
content, as a function of time. The total power in consecutive
20-ms segments, calculated from the integral of the individ-
ual power spectra, i.e., Sxx = XSk (f), is shown in Fig. 4¢
for a 4-s epoch. We compared the fluctuations in the inte-
grated power with those expected for a stationary random
process with the same average power spectrum;” the inte-
grated power for an epoch of the derived stationary signal
is shown in Fig. 4¢ (gray line). The fluctuations in the total
power of the stationary signal are clearly smaller than those
in the measured signal. To quantify this difference, the distri-
bution of the total power in each segment of the measured
signal and the derived stationary signal were calculated. The
power distribution of the measured signal is roughly 3 times
as wide at the 10 and 90% points as is the distribution of
the stationary Gaussian random process (Fig. 4d), with a
significant tail at high power. In toto, we find that the back-
ground activity cannot be modeled as a stationary Gaussian
random process. To the extent that the background activity
is the dominant contribution to the variability among spike
waveforms, this variability is not stationary.

Systematic variability

The distribution of projections of the spike residuals onto
the principal components of the residuals need not be

2 The fluctuations for the equivalent stationary process were calculated as
follows: the spectra for 4,000 segments of numerically generated Gaussian
random noise were constructed, each consisting of 500 samples (20 ms +
40 us per sample). The spectrum for each segment was computed and then
multiplied by the average spectrum determined for the background activity
(Fig. 4b). The distribution of power in this set of derived spectra was then
calculated (Fig. 4d).
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FIG. 4. Nonstationarity of background
activity. a: voltage waveforms for 3 20-ms

epochs of background activity. b: power
spectra of the epochs shown in a. ¢: inte-
grated power for successive 20-ms epochs.
Gray line: power for an equivalent stationary
Gaussian random process (see text for de-
tails). d: distribution function for the mea-

sured power and the derived power for an
equivalent stationary process. Note ' the
greater spread in amplitudes for the observed
spectrum.
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Gaussian, although the distribution of residuals at each time
sample may be nearly Gaussian, as seen for the data (Fig.
le). In particular, we observed that the distributions of pro-
jections of the residuals onto the first few principal compo-
nents of the variability are skewed for about half of the
units we examined. For the higher principal components,
the distribution of projections is generally not significantly
different from Gaussian.

The apparent non-Gaussian distribution of the dominant
modes may be the consequence of systematic changes in the
spike waveform over time. One mechanism for change is a
slow drift in the position of the electrode, so that the spike
waveform changes over the course of the data set; no such
drift is seen for the waveforms analyzed in this work. A
second mechanism is a change in the shape of the underlying
action potential that depends on the history of firing by the
cell. In support of this conjecture, we observe that the shape
of a spike waveform depends on the interval from the preced-
ing spike, denoted the interspike interval (ISI or 7). For
ISIs >100 ms, the waveform is different, typically narrower,
than that for ISIs <10 ms; this is shown for two single units
in Fig. 5, a and c. Note that we now consider the composite
waveform for the stereotrode, V™™ = [V{", V("]

To quantify the change in the shape of the waveform, we
determined the projection of each spike waveform along a
direction defined by the difference between the long-ISI av-
erage waveform, denoted V|, and short-ISI average wave-
form, denoted V. The projection is defined as

(V‘"J = vl.)' AV

P(n] =
(AV,5)?

(8)

1000 2000

Total Power [uV2]

where AV, s = V. — Vg, so that a value near 0 means a
spike waveform has a strong overlap with V,, whereas a
projection whose value is near —1 means a waveform has
a strong overlap with V. The nth instance of the waveform
has an associated ISI denoted 7,. A shift in the value of the
projection for spike waveforms that follow a long ISI relative
to those that follow a short ISI is clearly seen for the two
single units of Fig. 5, b and d, respectively; the shift is
comparable with the width of the distribution for either unit.
The distribution of projections, integrated over all ISIs, is
clearly not Gaussian (Fig. Se).

In general, the time-dependent shift in the shape of the
spike waveform is described by a vector, each of whose
components is a different function of the ISI. However, the
changes we observe can be modeled simply as a constant
vector multiplied by a single function of the ISI, denoted
f(7). The average waveform, denoted V, changes accord-
ing to

Vir) =V + (Vo = Vo) f(7) (9)

We take f(7) to be a single exponential, i.e., f(7) =
—exp[—T7/7,], with 7, = 22 ms for the data in Fig. 5d. For
each instance of the spike waveform, we now calculate the
difference between the actual projection (Eg. 8) and the
modeled projection, i.e., P"™ — f(7,); the final distribution
of these differences is nearly Gaussian (Fig. 5e).

Optimal filtering of spike waveforms

We now consider the implications of background variabil-
ity on the classification of spike waveforms from different
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FIG. 5. Systematic variability of spike
waveform as a function of the interspike
interval (ISI). a: stereotrode waveforms
observed a short interval after a preceding
spike and a long interval after a spike. Note
that the short-interval waveform is longer
and decreased in amplitude. b: distribution
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of projections of each recorded waveform
along the direction V, — Vy, defined by
the difference between the long- and short-
interval waveforms in a (see text), as a

40

= function of the ISI. Note the evolution in
shape as a function of the ISL ¢ and d:
change in waveform for a 2nd single unit.
Solid line through the data: fitted model of
the projection to a scalar function of time
(Eq. 8). e: integrated distribution of pro-
jections before and after the subtraction of
the model.
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single units. Our goal is to construct a filter that accentuates
the differences among a set of mean single-unit waveforms
(“‘signal’’) in the presence of background activity
(“‘noise’’). We first describe the statistical properties of a
set of average single-unit waveforms, and then use these
properties along with the properties of the background vari-
ability to construct this linear filter.

VARIABILITY AMONG SINGLE-UNIT RESIDUALS. We consider
a sample of mean single-unit waveforms, denoted W™,
where m 1, ..., M labels the mean single unit; in the
present case M = 44 (22 stereotrode waveform pairs) and
each mean waveform is the average of 2,000-5,000 in-
stances that were acquired as segments. Because we are
interested in detecting differences among single-unit wave-
forms, our subsequent analysis is in terms of the difference
between a given mean single-unit waveform and the average
across all such units (Fig. 6a), denoted §W'™, where
W™ = W™ — (W'™) and the averaging is over the M
single units.

The directions of maximum variability among the mean
single-unit waveform are given by the principal components
of the correlation matrix of the §W'™ ( Abeles and Goldstein
1977). We denote this matrix C,,, where

Cy = (6WSW ) (10)
is of rank T (recall that T = 32 and T < M) and the average
is over the M single units. We observe that the first component
is similar to the mean waveform and captures variability in the
amplitude of the waveform for different single units (Fig. 6a).
Higher-order components do not have simple interpretations,
but their largest amplitudes occur in the vicinity of the peak
of the spike waveform (Fig. 6a). The ordered spectrum of
the corresponding eigenvalues is seen to fall off rapidly with
component number (Fig. 6b), such that 95% of the variability

Inter-spike Interval [ms]

80
Density [Arb. Units]

between different single-unit waveforms is accounted for by
the four dominant modes shown in Fig. 6a. This result shows
that the difference between single units is defined in a subspace
whose dimension is substantially lower that that of the original
T-dimensional space of the waveforms.

WIENER FILTERING. The space spanned by the principal
components of the single units, described above, is a natural
basis for the representation of spike waveforms. Following
Wiener (Bozic 1994), we seek the optimal linear filter that
minimizes the mean square difference between each instance
of a spike waveform residual, i.e., a S§V™ ., and the mean
single-unit residual that best models that waveform, i.e., one
of the §W'™s. We model each instance in terms of the
underlying single unit plus noise, i.e.

SV = W™ + Vi (1n

where Vi = {V§ (1)}, is the additive background activity
associated with the nth instance of the spike waveform. The
filter, denoted F, is found by minimizing an error, £, defined
by

E = (|F6V — 6W |?) = (| F(6W + V) — 6W|?) (12)

where F is a T by T matrix. The average in Eq. 12 is com-
puted over the ensemble of mean waveforms, 6W, as well
as the ensemble of noise, V. The filter matrix is found by
minimizing the error with respect to F, which gives’

F = Cy(Cy + Cy) ' (13)

*The average square error is (Eq. 12) E = {[F(6W + V5) —
SWILF(6W + Vy) — W) = FCwF" + FCyF" — CwF" — FCy — Cy,
where the correlation matrices C and Cy are given by Eq. 10 and 14,
respectively, and we note that the averages (VaSWT) and (§W V) are 0
under the assumption that the background activity is uncorrelated with the
presence of a spike. The filter is found by minimizing E with respect to
the filter matrix F, i.e., setting E/GFT = 0, from which we get Eq. I3.
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where C,, is given by Eq. 10 and Cj is the correlation matrix
of the background voltage waveforms, i.e.,

Cy = (VsVE) (14)

where the average is over all instances of background activ-
ity (Figs. 2 and 3). The form of F is considerably simplified
when the correlation matrix for the mean single-unit residu-
als and for the background waveforms diagonalize in the
same basis (Eg. 9). In this limit the filter has only diagonal
elements in the principal component basis for the mean sin-
gle-unit residuals,* i.e.
R A2
(U'FU)ow = 5" baw

15
N+ ol (13)

where U is the rotation matrix (Eq. 7) constructed from the
principal components of the single-unit residuals, \2 is the
variance for the ath component of these residuals, o2 is the
variance for the background waveforms, and 6, is the Kro-
neker delta function.

The correlation matrix for the background activity (Figs.
2 and 4) was calculated as above (Eq. 14) and rotated ( Egq.
7) into the basis of the mean single-unit residuals. We ob-
serve that this matrix, UTCgU, is nearly diagonal. The vari-
ance terms, o 2, fall off only slowly with increasing compo-
nent number (Fig. 6b). Details aside, the essential feature
is that the variance of the single-unit residuals decreases
much more rapidly than that for the noise, such that signal-
to-noise ratio, N\2/o 2, exceeds 1 for only for the first six
components. The coefficients for the Wiener filter thus ap-
proach a value of 1 for the first few terms and decrease
rapidly for the high-order terms (Fig. 6b). In the limit of
Eq. 13, the eigenvectors of the filter matrix are equal to
those of the correlation matrix Cs (Fig. 6a); an ‘‘exact’
calculation of F yields essentially identical results.” Last, it
is instructive to compare instances of the same single-unit
waveform before and after filtering, i.e., V™™ = §V™ + (V)
versus Viie.a = F&V™ + (V) (Fig. 6¢). Note that the sharp
features of the peak of the spike waveforms are maintained,
but that ‘‘noise’’ across all frequency bands is suppressed;
this is the essential advantage of filtering in the basis of the
principal components.

Segmentation length

The prescription for an optimal filter of the spike wave-
form is one practical consequence of our analysis of spike
waveform variability. A second practical aspect concerns the
length of the segmented waveform, which we took to be
relatively long in the studies above. A long record will pro-

* The filter in the basis of the principal components of the single-unit
residuals 6W ™ is found by applying the rotation matrix U to the filter
matrix F (Eq. 13), ie., U'FU = U'Cy(Cw + Cp)™'U = U'Cw(UU")(Cw +
CB)’l(UU")Tﬁ = UprU(UTCWU + U"Cgl) ™", where we use the fact
that U is unitary, i.e., UUT = 1. When Cy as well as Cy are diagonalized
by the same rotation, so that (Eq. 7) UTCsU = A3 as well as U'Cy U =
%, the rotated filter matrix is diagonal, ie., UTFU = A% (A% +
A3%)7!, with elements given by Egq. 15.

®> The matrix for the background activity Cg is close to singular and
thus the calculation of the F is ill conditioned. We sidestep this issue
by adding a diagonal term el to the denominator in Eq. 14; good
convergence is found, with € roughly 0.1 times the mean size of the
elements of Cg.
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FIG. 6. Variability among a set of single-unit waveforms. a: average
waveform from a set of 44 single-unit waveforms (fop) and the st 4
principal components of the residual single-unit waveforms (bottom). b:
ordered eigenvalue spectrum for the single-unit waveforms and the back-
ground activity projected into the basis of the spike waveforms (left scale).
The 2 curves cross near mode 6; after this point noise dominates the wave-
form variability. Bottom trace: optimum (Wiener) filter (Eq. 12). The —3-
dB point occurs near mode 6, corresponding to the crossing of the 2 eigen-
value spectra; by mode 9 the amplitude of the filter has fallen an order of
magnitude. c: Illustration of the optimum filter applied to spike waveforms
from the same single unit. In this example the noise level is ~4 times the
typical level.

vide maximum information about a particular instance of a
waveform. On the other hand, too long a record may lead
to the presence multiple spikes in the segment, which may
confound the sorting process. We use a measure of the infor-
mation about the mean waveform contained in single-unit
waveforms in the presence of noise, i.e., the mutual entropy
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between the observed waveform and the underlying ensem-
ble of waveforms, as an objective measure for choosing the
desired record length.

The mutual entropy between the observed waveforms, 6V,
and the underlying mean waveform, 6W, is defined as

S(6V, W) = S(6V) — S(6V |6W)

where 0V = W + Vg, as above (Eq. 11), and 6W and V;
will be assumed to have Gaussian distributions with zero
mean and convariances Cy and Cg, respectively. We use
this assumption so as to be able to carry out a calculation
based on a realistic amount of data. Note that successive
samples must be assumed to be independent for this calcula-
tion. As we have illustrated (Fig. 5), this is not completely
true; however, to estimate the mutual information we make
this assumption. For a multivariate distribution of dimension
T with covariance matrix C, the entropy is given by § =
(T/2) log, (2me) + (1/2) log, [det(C)] in units of
bits (Cover and Thomas 1991). Noting further that
S(6V|6W) = §(Vg) and Cy = Cy + Cg (Egq. 10 and 14),
the mutual entropy (Eq. 16) can be written as

(16)

S(6V, 6W) = % log, [det (Cw + C)C5'] (17)

In the special case when Cy, and Cy diagonalize in the same
basis, Eq. 18 reduces to S(6V, 6W) = (1/2) Z1_, log,
(1 + X\2/c2) and is seen to contain significant contributions
only from those dimensions where the variability among the
underlying mean waveforms exceeds that of the background,
i.e., dimensions for which the ratio \2/52 > 1.

We calculated the mutual entropy as a function of the
length of the segmented record (Eq. 17); the position of the
record relative to peak of the spike waveform was adjusted
to maximize S. We find that the mutual entropy appears to
be close to its asymptotic value for segments with 7 = 32
samples, as used to construct Cy (Fig. 7). When the segment
is decreased to 14 contiguous samples, about a factor of 2
in length, the mutual entropy is reduced by only 1 bit. In-
creasing the relative amplitude of the background noise, of
course, decreases the entropy (Fig. 7).

DISCUSSION

Spike waveforms have at least two sources of variability.
First, there are signal sources that persist in the absence of
spiking in the observed neuron. To a good approximation,
these sources of signal are random with respect to the spiking
of the observed neuron and occur at all frequencies, although
the power decreases with increasing frequency. Second,
there are contributions to waveform variability that are non-
random. One such contribution depends on the time since
the previous action potential and is likely to result from
biophysical changes intrinsic to the observed neuron.

Background variability

The variability of the spike residuals is nearly identical
with that of background activity (Fig. 2, a and b). This
suggests that the presence of a spike does not change the
average properties of the noise, such as could occur if the
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FIG. 7. Entropy of the a set of single-unit waveforms, S(0V, W) (Eq.
17) as a function of the length of the segment. Each segment was shifted
relative to the peak of the waveform so that the entropy was a maximum.
Note that the entropy rises linearly and then rolls over between 5 and 10
samples toward an asymptotic value. Top curve is computed for the data
in this work. Bottom 2 curves are computed for noise levels 2 and 4 times
those observed.

mean activity in a region was modulated by the spike. Thus
the background variability appears as an additive noise.

The power spectrum for the residuals, or background, is
not white but rolls off at high frequencies (Fig. 2, a and b).
This shows that there are significant temporal correlations
in the spike residuals. Further, the rolloff is slower than that
for the spectrum of the spike waveforms. These spectra im-
ply that there are sources of noise other than somatic spikes.
Under the assumption that the background consists solely of
somatic spikes from an ensemble of neurons, whose arrival
times are Poisson distributed on average, the spectrum of
the background signal would resemble that of the spike
waveform. The observed excess of power at high frequencies
in the spectrum of the background activity may result from
axons of passage® or fast synaptic currents (Farrant et al.
1994).

We observed that the high-frequency aspect of the vari-
ability decayed on a length scale comparable with that be-
tween individual wires on the strereotrode pair, ~10 pym
(Fig. 2, ¢ and d). This result is consistent with the measured
decrement of the amplitude of the extracellular signal with
distance for cells in tissue culture, for which the decrement
is typically exponential with a decay constant of ~5 pm

° The power spectrum of propagating action potentials varies as S(f) x
f* at high frequncies, whereas that for nonpropagating action potentials
varies as S(f) « f2. Thus the presence of propagating action potentials in
the background activity will boost the high-frequency end of the power
spectrum relative to that of mean waveforms, which presumably correspond
to spikes at or near somata.
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(Tank and Kleinfeld 1986). However, the shape of the extra-
cellular signal and the exact form of the decay with distance
depended on the cell type and geometry.

The principal component analysis shows that there is a
strong anisotropy in the distribution of spike residuals (Fig.
4). Thus the variability between spike waveforms is much
larger along the directions defined by the low principal com-
ponents than along those defined by the high-order compo-
nents. Additional anisotropy is introduced by the observed
systematic variability in spike waveform as a function of the
ISIs (Fig. 5).

A second aspect of the background variability is the pres-
ence of 300- to 500-Hz peaks in the spectrum for brief
epochs of time, i.e,. tens of milliseconds (Fig. 4). The elec-
trical activity associated with these peaks is coherent be-
tween wires on the stereotrode pair, i.e., on the 10-um scale,
but incoherent between different stereotrodes, i.e., on the 1-
mm scale (data not shown). One possibility is that interneu-
rons fire trains near their maximal rates for =10-ms epochs,
for which rhythmic spiking is expected (Gray and McCor-
mick 1996; McCormick et al. 1985). An alternate possibility
is that small groups of interneurons fire rhythmically and
synchronously for such epochs, although individual neurons
in the group may fire at relatively low rates. Last, this aspect
of the background variability is suppressed when animals
are placed under halothane (2%) anesthesia (unpublished
results), not unlike the decrease in the variability of spike
arrival times in aroused versus anesthetized or sleeping ani-
mals (Paisley and Summerlee 1984 ).

Spike waveform variability

Our results show that for roughly half of the single units
in vibrissa cortex, the individual waveforms evolve as a
function of the time since the preceding spike, and reach
their asymptotic shape for an ISI of =100 ms (Fig. 5). This
change leads to non-Gaussian distribution of amplitudes in
the space of waveforms. Analogous changes in shape are
seen in intracellular records for neurons in slice preparations
and are particularly strong for cells that produce bursts of
spikes, such as layer 5 pyramidal neurons (Connors and
Gutnick 1990; McCormick et al. 1985). However, we often
see ISI-dependent changes in waveforms that do not exhibit
bursting (Fig. 5d).

An important aspect of our analysis is that the change in
waveform can be modeled as a linear superposition of two
vectors that is parameterized by a single function of time
(Fig. 5e). Our analysis suggests that, in principal, changes
in the state of a neuron may be inferred from systematic
variations in the extracellular signal. It remains to be seen
whether such changes in cortical neurons may be related to
behaviorally or computationally relevant events.

Implications for spike sorting

ANISOTROPIC VARIABILITY.  Our results suggest the impor-
tance of correctly accounting for the variability between
spike waveforms. In particular, algorithms based on the as-
sumption of an isotropic variability and a Gaussian distribu-
tion of amplitudes (Lewicki 1994 ) are likely to sort a given
single-unit cluster into multiple clusters. This problem may
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be alleviated by directly modeling the background variabil-
ity, which is nonstationary (Fig. 3), and the intrinsic wave-
form variability, such as that associated with the ISI (Fig.
5). A second possibility is to use a hierarchical clustering
scheme to account for the anisotropic, non-Gaussian vari-
ability (Fee et al. 1996). Application of the latter method to
multiunit signals collected from rat primary somatosensory
cortex has allowed three or more single units to routinely
be classified from a single stereotrode (Fee et al. 1995).

FILTERING. The directions of variability within a cluster
that do not lie along the significant directions of variability
between different single-unit clusters do not contribute to
the discrimination of spike waveforms. Rather these direc-
tions only contribute to the total variance of a cluster. Thus
the variability in a small number of dimensions contributes
to our ability to discriminate between different units. The
Wiener filter we describe (Eq. 13; Fig. 6b) preferentially
suppresses the variability in directions that are orthogonal
to those between different single-unit waveforms.

The application of the Wiener filter (Eq. 9-173) to an
instance of a spike waveform, V™, follows standard proce-
dures (Bozic 1979). 1) Subtract the mean single-unit wave-
form, (W), from the waveform to construct the residual,
6V™ . 2) Multiply the residual by the filter to form F6V™.
These vectors may then be clustered, as described in Fee et
al. (1996). Recall that relatively few dimensions account
for the major fraction of spike waveform variability. The
filter may be approximated by keeping only the components
whose amplitude is significantly greater than zero, e.g., the
first 10 components for the filter in Fig. 6b, so that the filtered
residuals may be sorted in a relatively low dimensional space
of principal components.”* We found that this filter typically
reduced the total variance of a cluster by a factor of ~2
(Fig. 6¢).

The eigenvalues of the filter (Fig. 6a) are a basis set for
the representation of any spike waveform residual. In this
sense, the filtration process we describe builds on the pro-
gram of Abeles and Goldstein (1977) (see also Gerstein et
al. 1983; Gozani and Miller 1994; Roberts and Hartline
1975; Stein et al. 1979) to define an optimum set of functions
for the sorting of spike waveforms. Thus different spike
waveforms found in different regions of the brain may re-
quire different filters. Furthermore, the filter coefficients de-
pend on the signal-to-noise ratio (Eq. /4) in a given re-
cording situation.

SEGMENT LENGTH. We observe that most of the variability
between single-unit waveforms occurs near the peak of the
spike waveform (Fig. 6a), a segment that is ~0.5 ms in
duration. The present analysis provides a quantitative mea-
sure of gain in discriminability among a set of single-unit
spike waveforms that is afforded by the use of longer seg-
ments of data. Although longer record lengths certainly im-
prove the discriminability between spike waveforms and do

7 An alternate way to view the filter is in terms of the distance metric
FTF; the metric weights the scalar distance between two waveforms, d,
and d,, according to dT(F"F)d,.

# A recent application of Wiener filtering to construct a matched filter
for individual spike trains (Gozani and Miller 1994) considered filtering
in the Fourier frequency domain, rather than in the domain of principal
components; in that case there is no reduction in the effective dimentionality
of the space of waveform residuals.
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not present practical problems as far as storage or computa-
tion, they can confound the ability to sort extracellular sig-
nals that contain many overlapping waveforms. Our results
suggest that records lengths of 1.3 ms afford only a 1-bit
improvement in the mutual entropy over a record length half
as long (Fig. 7). Thus records containing only the peak
region of the waveform may be adequate for sorting spike
waveforms, as previously observed (Lewicki 1994).
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