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SUMMARY AND CONCLUSIONS 

I. The present work relates recent experimental studies of the 
temporal coding of visual stimuli (McClurkin, Optican, Rich- 
mond, and Gawne, Science 253: 675, 199 1) to the measurements 
of the spatiotemporal receptive fields of neurons within the lateral 
geniculate of primate. 

2. We analyze both new and previously described magnocellu- 
lar and parvocellular single units. The spatiotemporal impulse re- 
sponse function of the unit, defined as the time-resolved average 
firing rate in response to a weak stimulus flashed at a given loca- 
tion and time, is characterized by the singular value decomposi- 
tion. This analysis allows one to represent the impulse response by 
a small number, two to three, of spatial and temporal modes. Both 
magnocellular and parvocellular units are weakly nonseparable, 
with major and minor modes that account, respectively, for -78 
and 22% of the response. The major temporal mode for both types 
is essentially identical for the first 100 ms. At later times the re- 
sponse of magnocellular units changes sign and decays slowly, 
whereas the response of parvocellular units decays relatively rap- 
idly. 

3. The spatiotemporal impulse response function completely 
determines the response of a unit to an arbitrary stimulus when 
linear response theory is valid. Using the measured impulse re- 
sponse, combined with a rectifying neuronal input-output rela- 
tion, we calculate the responses to a complete set of spatial lumi- 
nance patterns constructed of “Walsh” functions. Our predicted 
temporal responses are in qualitative agreement with those re- 
ported for parvocellular units (McClurkin, Optican, Richmond, 
and Gawne, J. Neurophysiol. 66: 794, 199 1). Under the additional 
assumptions of Poisson statistics for the probability of spiking and 
a plausible background firing rate, we predict the performance of a 
unit in the Walsh pattern discrimination task as quantified by 
mutual information. Our prediction is again consistent with the 
reported results. 

4. Last, we consider the issue of temporal coding within linear 
response. For stimuli presented for fixed time intervals, the singu- 
lar value decomposition provides a natural relation between the 
temporal modes of the neuronal response and the spatial pattern 
of the stimulus. Although it is tempting to interpret each temporal 
mode as an independent channel that encodes orthogonal features 
of the stimulus, successively higher order modes are increasingly 
unreliable and do not significantly increase the discrimination ca- 
pabilities of the unit. 

INTRODUCTION 

The neurophysiological correlate of sensation is a change 
in the spike output rate of one or more neurons in response 
to a change in the pattern of external stimulation. A priori, 

the relation between the output of a neuron and features of 
external stimuli may be complex. In practice, this relation is 
often simple for neurons involved in early stages of sensory 
pathways. Important and well-studied examples occur in 
the mammalian visual system, in which neurons at early 
stages respond to input localized to a restricted region of 
space. This region is referred to as the receptive field (RF). 

The RF of a neuron is a qualitative descriptor that is 
usually specified independently of features, such as lumi- 
nance, orientation, size, and velocity, that affect the firing 
rate of the neuron. However, the description of the RF is 
clearly intertwined with that of feature selectivity, e.g., the 
shape of the RF will determine the orientation preference of 
the unit (e.g., W&-getter and Koch 199 1). Thus, in princi- 
ple, a more general description of a unit can be formulated 
that allows one to predict the response of the unit to specific 
spatiotemporal input patterns. In practice, this description 
has been achieved only for neurons whose response is linear 
or dominated by a specific nonlinearity (see articles in 
Pinter and Nabet 1992). 

The response of a neuron is said to be linear if it satisfies 
the principle of superposition, i.e., the combined response 
to different stimuli is equal to the sum of the responses to 
individual stimuli. Previous experiments on the visual sys- 
tem of cat and monkey suggest that the response of many 
neurons to weak stimuli through the level of the lateral ge- 
niculate nucleus (LGN) ( Enroth-Cugell and Robson 1966; 
Hochstein and Shapley 1976; So and Shapley 1979) and 
possibly primary visual cortex (Jagadeesh et al. 1993; Jones 
and Palmer 1987; Movshon et al. 1978; Reid et al. 1987, 
199 1; Shapley et al. 199 1) is linear to good approximation. 
Within the linear approximation, the structure of the recep- 
tive field of the cell can be fully described by the measured 
response to any complete set of stimuli. A particularly sim- 
ple complete set is localized flashes, and the description that 
results from correlating the output of a neuron with the past 
location and time of a flash, i.e., so called reverse correla- 
tion (de Boer and Koyper 1968; Podvigin et al. 1974), is 
denoted as the spatiotemporal impulse response (STIR) 
function for the unit. Numerous investigators have used 
reverse correlation techniques to construct the STIR func- 
tion of units in the LGN (Podvigin et al. 1974; Reid and 
Shapley 1992) and primary visual cortex (McLean and 
Palmer 1989; Palmer et al. 199 1; Reid et al. 1987, 199 1). 
Although knowledge of the STIR is sufficient to predict the 
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response of the unit to an arbitrary input provided that its 
output remains within the linear regime, the consequences 
of linearity on issues of coding features of the stimuli by the 
neuronal spike train have not been properly examined (but 
see Atick 1992; Bialek 199 1). 

An alternative description of feature selectivity is consid- 
ered by Optican and Richmond and colleagues ( McClurkin 
et al. 199 1 c, 1994). These authors present measurements of 
the temporal response of neurons at subcortical and cortical 
levels in the primate visual system (Gawne et al. 199 1; 
McClurkin et al. 199 la-c, 1994; Optican and Richmond 
1987; Richmond and Optican 1987, 1990; Richmond et al. 
1987, 1990). They conclude that spatial aspects of a stimu- 
lus are coded in terms of the temporal structure of the neuro- 
nal response. 

Motivated by the evidence that the neuronal response in 
early visual areas is close to linear, we reexamine the results 
of Optican and Richmond and colleagues on the temporal 
coding properties of units in the LGN (McClurkin et al. 
199 1 a-c) in light of previous ( Reid and Shapley 1992) and 
new measurements of the spatjotemporal structure of the 
receptive field for these units. We use the measured STIR 
function and the assumed rectifying nonlinearity of the neu- 
ronal input-output relation to compute the expected tem- 
poral response of our LGN units to the set of Walsh pattern 
stimuli used by McClurkin et al. ( 199 lb). Following the 
latter authors, we compute the principal components of the 
temporal response. We find that the principal components 
predicted on the basis of measured STIR functions are in 
qualitative agreement with those observed by McClurkin et 
al. ( 199 1 a,b). We proceed with the comparison by comput- 
ing the mutual information between the set of stimuli and 
the corresponding responses. Again, reasonable agreement 
with the results of McClurkin et al. ( 199 la) is found. 

We conclude that the measurements of McClurkin et al. 
( 199 1 b) are consistent with the linear response data of Reid 
and Shapley ( 1992 and this work). The temporal structure 
of the neuronal response to Walsh patterns, observed by the 
former investigators, originates in the temporal properties 
of the neuronal response to a brief local stimulus. As ex- 
pected from the general principles of information theory, 
the characterization of the response that retains more of its 
temporal structure, e.g., a time-resolved rather than time- 
averaged characterization, carries greater mutual informa- 
tion. However, we express reservation with respect to the 
interpretation of the temporal principal components as 
“codes” of the spatial structure of the stimulus. The notion 
of a code appears redundant in the linear regime, where a 
well defined linear input-output relation exists. Further- 
more, as our analysis will clarify (DISCUSSION), such a 
“code” would apply only to spatial stimuli with an identi- 
cal, specific time course. An appealing alternative is to 
think of distinct modes of the response as independent in- 
formation channels. 

The outline of this paper is as follows. In METHODS we 
discuss the procedures used to acquire data. In RESULTS the 
measured STIR functions for magnocellular and parvocel- 
lular units of macaque LGN are presented and analyzed in 
terms of singular value decomposition modes. The struc- 
ture and the interpretation of these modes is discussed. We 

use the measured STIR functions to compute the principal 
components of response to Walsh patterns, which are then 
compared with the results of McClurkin et al. ( 199 la,b). 
We also estimate the mutual information for our Walsh 
pattern Gedanken experiment and compare it with the 
same quantity measured by McClurkin et al. ( 199 la). In 
DISCUSSION we relate the STIR modes and principal compo- 
nents of the response to the issue of neural codes. 

Preliminary aspects of this work have appeared (Shrai- 
man et al. 1993). 

METHODS 

The data we use include data previously taken as part of a study 
on the chromatic properties of single units in the LGN of macaque 
monkey ( Reid and Shapley 1992)) as well as unpublished data. In 
total, we use the results for 9 magnocellular single units, 6 on- 
center and 3 off-center, and 3 1 parvocellular units. The parvocel- 
lular units are divided into subclasses that are based on the spectral 
sensitivity of their cone inputs, i.e., the short, medium, and long 
wavelength-sensitive cones denoted S, M, and L, respectively. 
There are three S on-center, one S off-center, five M on-center, 
four M off-center, nine L on-center and nine L off-center units. In 
two cases, both M off-center, the response of the unit is measured 
twice. This allows us to check the consistency of the data. 

Data collection is as described (Reid and Shapley 1992). In 
brief, single tungsten electrodes are used to record from LGN relay 
cells in anesthesized and paralyzed macaque monkeys. The recep- 
tive field of magnocellular units lie between 3.0 and 23.0’ of the 
fovea, and that of parvocellular units lie between 3.0 and 13.0’. A 
series of crossword puzzle-like patterns, constructed from m-se- 
quences (Sutter 1987)) are presented at fixed intervals. These pat- 
terns consist of an L, by L, matrix of squares that are chosen 
pseudorandomly to be either dark (labeled - 1) or light (labeled 
+ 1). A sequence of patterns corresponds to a time-ordered list of 
- l’s and + l’s for each of the Lk squares. This sequence defines 
the stimulus, S(?, t). The spatial dimensions3 = (x, JJ) are quan- 
tized in L, steps, where L, = 8 or 16 and each step subtends an 
angle of 0.13-0.43 O. The temporal dimension, t , labels the pattern 
and is quantized in units of the stimulus frame interval, 14.8 ms. 
Only a tiny fraction of the 2 ‘& patterns are shown in a given 
sequence, ’ whose length, N,, is typically N,,, = 216 - 1 = 65,535. 
The contrast of the stimulus is 25% for 7 of the magnocellular 
units, 100% for 2 of these units, and 100% for all 3 1 parvocellular 
units. 

The STIR function of a unit, denoted R (7, t), is found by corre- 
lating the measured spike train, A(t), with the stimulus, i.e. 

1 T 
R(7, t) = 7 

s 
dt’S(T, t’) A( t - t’) (0 

0 

In practice the RF is calculated for a finite interval of time, t < 246 
ms, which is much shorter than the duration of the stimulus, T = 
N, x 14.8 ms. This interval corresponds to N, = 16 frames, which 
is sufficient to record the STIR. For clarity in the formalism, all 
functions are written in terms of continuous variables, although 
they are treated as discrete during numerical calculations. 

RESULTS 

STIR function 

LINEAR RESPONSE. The reverse correlation construction 
(Eq. I ) of the STIR function is founded on the assumption 

’ The value of the spatially averaged pair-wise correlations are 1 lN,, as 
opposed, e.g., to 1 / m for sequences of patterns selected at random. 
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that the trial averaged activity of a cell is a function of a 
linear superposition of the inputs, i.e. 

(2) 

where the response of the cell is quantified by Z(t), the 
probability of a spike being fired at time t or, equivalently, 
the instantaneous firing rate. The function g(x) specifies 
the input-output relation, and the constant 2, controls the 
spontaneous firing level of the neuron. Provided that the 
stimulus dependent contribution is small compared with 
ZO, so that stimulus induced modulation is small compared 
with the spontaneous firing rate,2 the input-output relation 
(Eq. 2) can be linearized about Z0 = g(Z,), i.e. 

Z(t) = Z. + g’(Z,) j- d2r j- dt’R( t - t’, T)S(7, r’) (3) 

The reconstruction of R (t , 7) ,- up to a scale factor g’(Z,), 
via the reverse correlation Eq. 2 for the m-sequence stimu- 
lus S(?, t’), then follows from the assumption that the time 
average in Eq. 1 is equivalent to the trial average for repeti- 
tions of the same spatial stimulus. 

The STIR function, R(?, t), for two representative units 
are shown in Fig. 1; an on-center magnocellular unit and a 
long-wavelength-sensitive off-center parvocellular unit. 
The data are in the form of successive frames that are ac- 
quired at 14.8-ms intervals and quantized into 16 X 16 
spatial pixels. Positive responses are coded green and nega- 
tive responses red. We observe that for both units there is 
little discernible response until the third frame (t = 44 ms) 
and that the response peaks rapidly, by approximately the 
fourth frame (t = 59 ms). The well-described center- 
surround spatial structure, where the response at the center 
of the cell is opposite in sign from that in the surround, is 
evident in the magnocellular response but less clear in the 
parvocellular response. The spatial structure of other units 
is qualitatively similar. As time progresses, the sign of both 
the center and surround are seen to change. 
DECOMPOSITION OF THE STIR FUNCTION. The resultant STIR 
functions are in general nonseparable functions of space 
and time, i.e., R(?, t) # F(7)G( t), where F(T) is some 
function of space and G(t) is some function of time. How- 
ever, R (7, t) can be expressed as a sum of products of spatial 
and temporal modes, i.e. 

R(7, t) = c XnFn(T)Gn(t) (4) 
n=l 

where the spatial modes F,(T) and the tern 
Glw from orthogonal bases, i.e. 

poral modes 

s 

1 
s 

7‘ 
d2rF,(7)&(7) = 6,,,, and r dt(;,,( t)G‘,,,( t) = 6,,, (5) 

0 

where ann1 is the Kronecker delta function. This expansion, 
formally known as a singular value decomposition (SVD), 
provides a simple description of the RF when few terms 
contribute to the sum (Golub and Kahan 1965). The calcu- 

2 The modulation amplitude of the response is expected to be small in 
early visual areas for stimuli with sufficiently low contrast. The integrated 
stimulus contrast in the present experiments was observed to maintain the 
output of most magnocellular and all parvocellular units in their linear 
range. 

lation of the modes and expansion coefficients, X,, from the 
measured form of R(?, t) is described in APPENDIX A. 

The representation of receptive fields in terms of the 
above decomposition is illustrated in Fig. 2 for the represen- 
tative magnocellular and parvocellular units (Fig. 1). Only 
the first two terms are significant for the magnocellular 
unit. The first term consists of a symmetric unipolar spatial 
mode accompanied by a biphasic temporal mode, whereas 
the second term consists of a bimodal spatial mode accom- 
panied by a triphasic temporal response. Interestingly, the 
center-surround structure appears in the minor mode. The 
representative parvocellular unit has three significant 
terms. As in the case of the magnocellular unit, the first 
term consists of a unipolar spatial mode. However, al- 
though the spatial structure of the high-order modes is bi- 
modal, it is asymmetric and thus not described as center 
surround. In the above examples, and in general, the first 
term dominates. A statistical analysis (APPENDIX A) shows 
that, for 37 of the 40 units, at least 2 terms are significant. 
The ratio of the expansion coefficients is, on average, 
1 X, I: 1 X2 1 N 4: 1. For five of the units, the third moment is 
significant only at the level of one standard deviation of the 
experimental noise level. 

We now consider the form of the dominant temporal 
modes, G, ( t ) and G, ( t ), in detail ( Fig. 3). The first-order 
mode for both magnocellular and parvocellular units peaks 
45-60 ms after the onset of stimulation. The sign of the 
response then reverses, i.e., the response is bipolar, with the 
magnitude of the reversal particularly pronounced for mag- 
nocellular units. The response for both units recovers to the 
baseline value by 140 ms. The second-order mode is, not 
unexpectedly, more complex than the first-order mode. It 
appears triphasic for magnocellular units and biphasic for 
parvocellular units. Qualitatively, the temporal modes of 
both units are essentially the same for the first 60 ms, after 
which the parvocellular response decays considerably faster 
than that of magnocellular units. This later response is the 
origin of the descriptors “phasic” for magnocellular units 
and “tonic” for parvocellular units. 

The above results show that the RF of units in the LGN 
are well approximated by the sum of only two space-time 
products. This suggests that a useful measure of the nonse- 
parability between space and time is the normalized value 
of the coefficient for the second mode, i.e., I X2 I /( I X, I + 
I X2 I ). The values of this measure are broadly distributed, 
with a mean of 0.22 (Fig. 4). There are no apparent differ- 
ences between magnocellular and parvocellular units. 

Comparison with the measwements ofMcClurkin et al. L 

PREDICTED RESPONSE TO WALSH PATTERNS AND THE PRINCIPAL 

COMPONENTS. We consider first the relation between the 
STIR functions reported in this work (Figs. 2 and 3) and 
the results of McClurkin et al. ( 199 la) on the response of 
units to Walsh patterns. Like the m-sequence patterns, 
Walsh patterns consist of black and white squares (e.g., Fig. 
4). Each pattern has L, squares on edge, or L$, squares 
total. They form a complete basis, in the sense that linear 
combinations of different patterns can represent any black 
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Parvocellular Unit 

14.8 ms / frame 
FIG. 1. Space-time receptive field (RF) for representative units in the lateral geniculate nucleus ( LGN). Space in quan- 

tized in pixels, with 16 X 16 pixels per frame, and time is quantized in frames, corresponding to the 14%ms refresh period of 
the m-sequence stimuli. Changes in firing rate are color-coded, as indicated. A: results for an on-center magnocellular unit 
[ zr902llO/.fin]. Each pixel isO.43” on edge. The scale is in spikes/frames above the background level of052 spikes/frame, 
or 33.7 spikes/s, and is chosen to highlight the average activity: the largest observed change in any pixel is 0. I6 spikes/frame. 
B: results for a long-wavelength off-center parvocellular unit [ zr9051304.rin] Each pixel equals 0.13” on edge. The back- 
ground level is 0.53 spikes/frame, or 34.5 spikes/s: the largest observed change is 0. IO spikes/frame. 

Magnocellular Unit Parvocellular Unit 

n=l n=2 n=l n=2 n=3 

Tempo l!L!..I 
-100 ms 

FIG. 2. Singular value decomposttion of the RF for LGN umts. Shown are the spatial modes F,,(7) and the temporal 
modes <T,,(t) (Eq 4) for the representative units in Fig. I. The spatial modes Include only the 8 X R-ptxel subregion 
containing the active part ofthe held. They are presented as false colored images with red indicating posittve values and green 
Indicating hyperpolarization. A: results for the I st 2 modes of the on-center magnocellular unit. The expansion coefficients 
are X, = 0.840 s-l, X, = -0.233 s-l, X, = -0. I25 s-’ , and X, = 0. I 19 ss’ ; only the 1st and 2nd terms in the expansion are 
stattstically stgnificant. Note that only the ruulro between the absolute values of the ergenvalues IS meaningful. B: results for 
the 1st 3 modes of the long-wavelength off-center parvocellular unit, The expansion coefficients are X, = 0.634 s-l, X, = 
-0.229 s-l, X, = -0.064 s-’ and X, = -0.046 s-l The 1st 3 terms in the expansion are statistically signrficant. Note that the 
magmtude of X2 for this particular unit IS atypically large. 
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MAGNOCELLULAR UNITS PARVOCELLULAR UNITS 

=oo - 3 
v-J+ 

00 - 

/ / 
0.0 100.0 200.0 0.0 100.0 200.0 

TIME. t [ms] 

FIG. 3. Dominant temporal modes, G,(t), G*(t), and G,(t), for our 
magnocellular and parvocellular units. For G,(t) and G,(t) we show the 
waveform only for those units in which the expansion coefficients are 
statistically significant. 

and white picture with a resolution of 1 part in Lw. For this 
case, the stimulus is of the form 

S-(7, t) = 
u,(t) ifOct<T 

0 otherwise 
(6) 

where u,(7) defines the spatial pattern of the ath stimulus 
and includes both normal and contrast reversed images. 
These patterns satisfy 

y$ z u,m%(v = b ( 7) 

where Nw = 2Lzw is the number of patterns. The sum of all 
patterns is a blank, i.e. 

kw x Km = 0 (8) 

Using Eq. 2 we obtain Z,(t), the average neuronal spik- 
ing activity at time t after the onset of Walsh pattern CY, i.e. 

z,(l)=g[Z,+Sdr2~~“‘~‘dt’R(‘r,f-I’)u,(T)] (9) 

As emphasized earlier (Eq. 3)) for sufficiently weak stimuli 
Eq. 9 can be linearized and the stimulus-induced variation 
in Z, is determined by R(7, t) up to a multiplicative con- 
stant. For stronger stimuli an additional assumption about 

x forx 2 0 
k?(x) = 

0 forx < 0 
(10) 

which corresponds to rectification that prevents the instan- 
taneous firing rate Z(t) from having non-negative values. 
The rectification effect is important only when negative 
modulation induced by stimuli are comparable with the 
spontaneous firing rate. We do not include the effect of 
saturation in Eq. 10 on the assumption that the maximum 
firing rate of LGN neurons, on the order of 100 spikes/s, is 
never reached in the experiments that we consider. Equa- 
tions 9 and 10, combined with the measured STIR func- 
tions as parameterized by Eq. 4 and estimates of the back- 
ground firing rate, Zo, and stimulus amplitude, 1 u, 1, allow 
one to compute the expected temporal response to the 
Walsh patterns. An example for a particular parvocellular 
unit is shown in Fig. 5, where we used a 4 X 4 set of Walsh 
patterns and include only one sign of contrast. The steady- 
state change in firing rate as well as the transient change at 
short times is seen to vary significantly between stimuli. To 
compare the predicted response with those reported by 
McClurkin et al. ( 199 1 a,b), we need to consider a measure 
of the ensemble averaged response of parvocellular units. 

McClurkin et al. ( 199 1 b) measure the response of parvo- 
cellular units in the LGN averaged over several presenta- 
tions for each stimuli comprising the Walsh set. They find 
that each of the measured responses, Z,(t), is accurately 
represented by a small number of temporal modes, denoted 
the principal components3 G,(t) , and express their results 
in the form 

i 

3 MAGNOCELLULAR 

PARVOCELLULAR 

0 ‘- i 
0.0 0.1 0.2 0.3 0.4 0.5 

NONSEPARABILITY. I h,l/(lh,l+lh,l) 

FIG. 4. Quantification of nonseparability for units in the LGN. Shown 
is a histogram of the nonseparability between space and time for 37 of the 
41 units in which at least 2 terms in the singular value decomposition (Eq. 
4) are significant. Open regions correspond to magnocellular units, and 
shaded regions to parvocellular units. 

3 In the present work the principal components are labeled a, (t), . . , 
whereas in the work of McClurkin et al. the indexing starts at 0 and the 

the form of g(x) is needed. A minimal such assumption is components are &,(t), . 



SPACE AND TIME 2995 

TIME, t [ms] 

FIG. 5. Average temporal response, Z,(t), calculated (Eqs. 9 and IO) 
for all members of a 4 X 4 set of Walsh patterns with the use of our 
representative parvocellular unit (Figs. 1 B and 2 B). Inserts show the par- 
ticular pattern. 

z,(t) = a0 + c aa,nWt) (W 
n=l 

where z(t) is the average response to all of the stimuli, i.e. 

(12) 

The principal components are by definition the eigenfunc- 
tions of the covariance matrix, C( t, t’), of the measured 
averaged neuronal responses, i.e. 

qt, t’) = - d z izatt> - z(t)l[za( 
W a-l 

‘) - Z( t’)] (1-U 

It is important to stress that the responses in the covariance 
matrix are already averaged over all trials, i.e., repetitions of 
a given stimulus. Thus the covariance matrix defined above 
does not include trial-to-trial fluctuations. Last, the expan- 
sion coefficients acr,n are 

1 T 
a =- 

a,n s T 0 
dtza(t)an(t) (14) 

To make contact with McClurkin et al. ( 199 1 a), we per- 
form a detailed calculation of the principal components for 
each of our magnocellular and parvocellular units (Eqs. 4 
and 6-23). The first three principal components are shown 
in Fig. 6. The transient behavior of a1 (t) and +2(t) is con- 
fined to early times, as expected from the decomposition of 
the RF (Fig. 2). There is a spectrum of waveforms for the 
principal components calculated for the magnocellular 
units (Fig. 6, A-C). For several magnocellular cells, the first 
principal component eigenvector does approach the base- 
line at long times. The reason for this diversity is unknown. 
On the other hand, the form of the principal components is 
quite similar for all parvocellular units (Fig. 6, D-F). 

The principal components we predict for parvocellular 
units on the basis of the measured RFs (Fig. 6, D-F) com- 
pare well with those reported by McClurkin et al. ( 199 la) 
(reproduced in Fig. 6, G-I). The shape and time course of 
the predicted and measured forms of a1 ( t) and @2( t) are, 
qualitatively, indistinguishable at short times. There is a 
small, slow component in the second component reported 
by McClurkin et al. ( 199 1 a) that is not present in our re- 
sults. This is likely to be a consequence of adaptation dur- 
ing their relatively long period of stimulation (see DISCUS- 
SION). The third principal component in the analysis of 
McClurkin et al. ( 199 la) is essentially insignificant, similar 
to the predicted result. Two of the units that comprise the 
data of McClurkin et al. ( 199 1 a) are reported to be atypical 
(dashed and dotted lines in Fig. 6, G-I). We suggest that at 
least one of these units is a magnocellular unit (cf. dashed 
line in Fig. 6, G-I, with Fig. 6, A-C). 

QUANTITATIVE MEASURES OF STIMULUS DISCRIMINATION. 
McClurkin et al. ( 199 1 a) have observed that the inclusion 
of time dependence in the measures of neuronal response 
enhances the ability to discriminate between the distinct 
stimuli. A quantification of discrimination is the mutual 
information between the set of stimuli and the response, 
and an increase in mutual information is consistent with 
the general notion (e.g., Cover and Thomas 199 1) that the 
mutual information between a fixed set of inputs and a set 
of outputs can only increase with an increase of the dimen- 
sionality of the output space. In other words, the mutual 
information between the stimuli and the set of measure- 
ments of the neuronal response will only increase as addi- 
tional measurements of the response are made. For exam- 
ple, the output space is one dimensional if only the total 
number of spikes in the measurement period is reported. It 
is two dimensional if one measures projections onto two 
principal components, and it is K dimensional if the re- 
sponse is described by the instantaneous firing rate mea- 
sured at K points in time. Note that the gain in the mutual 
information occurs only to the extent that different mea- 
surements are not completely correlated with each other 
while still correlated with the stimulus. This requirement 
makes the principal components of the response a sensible 
choice of basis, as we shall explain in the following section. 

We now estimate quantitatively the expected gain in mu- 
tual information due to the increase in temporal resolution 
of the response. The estimate for parvocellular units will be 
directly compared with the results of McClurkin et al. 
( 199 1 a). To compute the mutual information between the 
spike train A(t) observed in a single trial and the stimulus, 
one needs to know the statistics of the spike train in addi- 
tion to its average instantaneous firing rate (Eq. 2). We 
shall assume the spikes to be generated by an inhomo- 
geneous Poisson process (APPENDIX B). 

Tables 1 and 2 show the mutual information calculated 
for three characterizations of the response with increasing 
complexity (APPENDIX c): 1) the total number of spikes, 
i (Eq. C.5); 2) the overlap of the spike train with the first 
principal component, A, (Eq. Cd); and 3) the complete 
spike train, A(t) (Eq. B6). For these calculations the presen- 
tation time is fixed at 246 ms, close to the value of 256 ms 
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FIG. 6. Principal components of the neuronal output in response to Walsh pattern stimuli. The functions a1 (t), G2( t), 
and a3( t) are calculated for all of our units, as described (Ey. 6), and are compared with those reported by McClurkin et al. 
( 199 la). A-C: results for the magnocellular units. D-F: results for our parvocellular units. G-I: principal components 
reported by McClurkin et al. ( 199 1 a) from measurements on parvocellular units in the LGN. The 2 dashed lines correspond 
to units that are judged by those authors to be atypical. These data should be contrast with the components calculated for our 
parvocellular units, cf. D and G, E and H, and F and I. 

used in the experiments of McClurkin et al. ( 199 1 b). We crease in mutual information for magnocellular units re- 
observe a doubling of the mutual information for our mag- fleets the transient nature of their response characteristics 
nocellular units in comparing the response for the full spike (Fig. 3), an issue we explore by considering the dependence 
train versus the number of spikes (Table 1) but only a 30% of the mutual information for the three above cases on the 
increase for parvocellular units (Table 2). The greater in- presentation time of the stimulus (Fig. 7). 

Information based on the number of spikes, I(x; S). We 

TABLE 1. Mutual information for d@krent measures of 
neuronal response.- magnocellular units 

focus first on our representative magnocellular unit 
(Fig. 1 A). The mutual information rises steeply from 
chance, I( n; S) = 0, at short integration times; achieves a 

Measure Predicted Value maximum value as the time increases; and then decays 
slightly to a steady-state plateau value at long times (trian- 

I(& S) Number of spikes 
I(&; S) Overlap of train with *i(t) 
I(& S) Spike train 

0.28 + 0.05 
0.41 + 0.04 
0.60 +_ 0.06 

gles; Fig. 74. The initial rise occurs because the integrated 
activity for magnocellular units is greatest during the early 
part of the response [see a1 (t) in Fig. 74. The slight dip 

Values in Predicted Value are means + SE; number of units in Predicted and plateau occur because the integrated response receives 
Value is 9. relatively little contribution from stimulus related events 
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after the first 50 ms but continued contributions from back- 
ground firing.4 In contrast to the case for the magnocellular 
unit, the mutual information for the representative parvo- 
cellular unit rises essentially continuously over the entire 
time course of stimulation (triangles; Fig. 7 B). This behav- 
ior is a consequence of the sustained response of parvocel- 
lular units at long times. 

Information based on the3rst principal component, I(&, 
S). The first principal component provides the dominant 
contribution to the average response of our units (Fig. 4) 
and, as shown later, dominates the reliability of parvocellu- 
lar units (Fig. 8). We observe a significant increase in the 
estimate of mutual information based on the overlap of the 
spike train with the first principal component compared 
with the information calculated for the number of spikes 
(cf. squares with triangles in Fig. 7, A and B). The increase 
is 32% for magnocellular units and 12% for parvocellular 
units. The greater increase for magnocellular units reflects 
the relatively limited time interval over which they re- 
spond. 

Information based on the complete spike train, I[ A(t), 
S]. For this case the mutual information must be a mono- 
tonically increasing function of time. We observe that, for 
the magnocellular unit, the mutual information shows a 
sustained albeit small rise at long times in addition to the 
rapid rise at short times discussed above (circles; Fig. 7A). 
The latter rise reflects a relatively small but nonetheless 
significant steady-state component in the response of this 
unit. For the case of the parvocellular unit, the time course 
of the mutual information behaves quite similar to that 
calculated for the reduced measures (cf. circles with squares 
and triangles in Fig. 7B). This occurs because the inte- 
grated value of the temporal response for parvocellular 
maintains a significant plateau (Fig. 3) with no discernible 
feature ( s) . 

COMPARISON WITH THE MEASUREMENTS OF McCLURKIN ET 

AL. We compare our predicted results of the mutual infor- 
mation for parvocellular units with that found in the exper- 
iments of McClurkin et al. ( 199 la). Within uncertainty, 
the mutual information between the full spike train and the 
Walsh patterns is the same in both studies, -0.7 bits (Table 
2). Further, when the number of spikes is considered, 
rather than the full train, a reduction of the mutual infor- 
mation by 20-30% is seen from both studies. McClurkin et 
al. ( 199 la; Optican et al. 199 1) report that the mutual in- 
formation is significantly reduced when only the overlap of 
the spike train with the first principal component is consid- 
ered. In contrast, we predict a smaller effect (Table 2 ). The 
overall agreement between the two studies is surprisingly 
good, perhaps better than one has a right to expect in view 
of difference in the experimental conditions between our 
measurements and those of McClurkin et al. ( 199 1 b) and 
in light of the assumptions made in our analysis (APPENDIX 

c and DISCUSSION). 

4 A similar conclusion is reached by Tovee et al. (1993) for the informa- 
tion content of units with phasic response properties in primate temporal 
visual cortex. 

TABLE 2. Mzrtzul irlfiormation jbr d@hent measures of‘ 
nezironal response: parvocellzrlar units 

Predicted McClurkin et al. 
Measure (Present Study) (1991a) 

I(& S) Number of spikes 0.59 k 0.04 0.47 k 0.06 
I(&; S) Overlap of train with @i(t) 0.67 + 0.05 0.48 k 0.07 
Z(A; s> Spike train 0.75 t 0.05 0.64 + 0.10 

Values in Predicted and McClurkin et al. are means _+ SE; number of 
units in Predicted is 3 1 and in McClurkin et al. is 1 1. 

Principal components and coding 

We now discuss the meaning of the modes found by our 
singular value decomposition of the spatiotemporal re- 
sponse function as well as their relation to the principal 
components of the response to Walsh patterns measured by 
McClurkin et al. ( 199 la) and to issues of information and 
coding raised by these authors (Gawne et al. 199 1; McClur- 
kin et al. 1991~). 

The dominant SVD modes describe those aspects of the 
stimulus that control the instantaneous, trial-averaged fir- 
ing rate of the unit at a given poststimulus time. Thus, for 
example, the spatial patterns of a stimulus orthogonal to the 
first two (or 3) spatial modes do not contribute to the re- 
sponse, i.e., the unit is “blind” to those aspects of the stimu- 
lus. Also, because the spatial modes are orthogonal to each 
other, they correspond to different “features” of the stimu- 
lus and thus are, in principle, independent. To the extent 
that these independent features are discernible in the out- 
put, one can speak of them as being “encoded” in the 
output. 

In general, the instantaneous response depends not only 
on the spatial but also on the temporal aspects of the stimu- 
lus. For the special case that the time dependence of the 
stimulus is particularly simple, e.g., a stationary stimulus 
during a fixed presentation time T, a simple relation be- 
tween orthogonal spatial modes of the stimulus and orthog- 
onal temporal modes of the response emerges. In the linear 
regime, these temporal modes are found by the SVD analy- 
sis of response to pulses of duration T, obtained by using 
S(7, t) = u(F) for 0 < t < Tin Eq. 2, i.e. 

Z(2) = g z() + 
[ J 

d2rR,(7, 2) u(7) 1 U-5) 
where, as before, u(T) refers to the spatial pattern of the 
stimulus and 

s 

min(f,T) 

R#,t)- dt’R(T, t - t’) W) 
0 

The SVD analysis of R,(7, t ) (APPENDIX A) generates a set 
of orthogonal spatial and temporal modes, &&TI) and 
6,.,(t), analogous to those we found for R(T, t)‘( Eq. 4)? 
On the other hand, when Eq. 1.5 can be linearized (Eq. 3) 
the e,.,(t) are, by their definition, the principal compo- 
nents of trial-averaged responses Z,(t) for a complete set of 
stimuli S,(T, t) (Eqs. 6-8). Aside from a constant factor, 

5 The SVD modes of R,(T, t) reduce to those of R(7, t) in the limit 
T /\ 
1 -u. 



2998 D. GOLOMB, D. KLEINFELD, R. C. REID, R. M. SHAPLEY, AND B. I. SHRAIMAN 

FIG. 7. Reliability of representative units for discriminating between stimuli on the basis of the neuronal output. A: 
mutual information between the neuronal output and the stimulus (Eq. C2) for the representative magnocellular unit (Figs. 
1 A and 2A). The solid curve with circles is the measure for the full spike train, I( A; S), whereas the dashed line with squares 
is for the first principal component, I( A,; S), and the one with triangles is for the number of spikes, I( i; S). B: mutual 
information between the neuronal output and the stimulus for the representative parvocellular unit (Figs. 1 B and 2 B). 

MAGNOCELLULAR UNIT PARVOCELLULAR UNIT 

TIME, t [ms] TIME, t [ms] 

they differ from the a,( t) found in the previous section 
(Eq. 1 I ) only to the extent that Z,(t) computed for the set 
of Walsh patterns is affected by rectification (Eq. IO). 
Thus, for the case of pulse stimuli, the spatial mode I$.#) 
is encoded in the temporal response as a principal compo- 
nent G,..(t). This establishes the relation between the SVD 
of the response function, the principal components, and the 
notion of coding as proposed by Gawne et al. ( 199 1). 

An alternative point of view is that the principal compo- 
nents should be considered as independent information 
channels. To make this notion precise, consider the addi- 
tional discrimination capability provided by the inclusion 
of an additional SVD mode or principal component in the 
measured “output” of a neuron. The amount depends on 
the magnitude of the contribution to the response made by 
this mode compared with the root-mean-square (RMS) 
fluctuations of the response. To illustrate this point we 
again consider neuronal responses in the linearized regime 
so that Eq. 15 becomes 

Z(t) = Z. + c XnAn&( t ) (10 

with the spatial structure of the stimulus parameterized by 
the projections 

If Z(t) were known exactly, all the stimulus parameters 
would be determined exactly as well. The question, how- 
ever, is how well the parameters can be estimated without 
the precise knowledge of Z( t), e.g., from a single spike train 
A(t) of duration T that is generated by an inhomogeneous 
Poisson process with instantaneous rate Z(t). The simplest 
estimate of A, is 

strictly valid in the limit of an infinite number of trials. 
Note that the size of A, depends on the change in firing 
induced by the stimulus as well as on the SVD modes for 
the unit. An estimate of the maximum size of Al for our 
parvocellular units, for which X, - 1 s-l because the first 
mode dominates and for which 6,,,(t) is approximately a 
constant [ GIiT( t) = 4,(t) in Fig. 601, is 1 A, 1 < (i&T)/ 
(XJ) - 10. 

To assess the expected RMS fluctuations of the estima- 
tor, we consider the variance of A, for a Poisson spike pro- 
cess, or, more properly, the covariance CJ~~ of the estimators 
A, and A, (APPENDIX D), i.e. 

&l = ((A, - An)(A^fn - &))tfia, E! + 6,, (20) 
n 

The form of Eq. 20 shows that different A, are uncorrelated 
and that the RMS fluctuations are inversely proportional to 
the eigenvalue X, associated with the SVD mode, so that 
modes with small X, are difficult to estimate precisely. The 
scale of the RMS fluctuations is set by VW, where ZJ is 
just the average number of background spikes during the 
observation of the response. 6 For our parvocellular units, 
the RMS fluctuations are iz - 3 (see above), and the 
magnitude of the stimulus parameter Al is at most approxi- 
mately three times the level of fluctuations in the estimate 
of A, based on a single trial, i.e., 1 A, l/v6 < 3. 

The present calculation suggests that the different tem- 
poral modes, or principal components, can be viewed as 
independent information channels with higher order 
channels becoming increasingly unreliable. Further, it 
allows us to illustrate why the addition of the second chan- 
nel, i.e., the inclusion of the additional principal compo- 
nents in the characterization of the response, does not re- 

1 T A, = - 
s &lT 0 

d&;,(t)[A(t) - 201 (W 

The trial average of the estimator is (A,)trial = A,, found 
from Eq. 19 with ( A( t))trial = Z(t) and Eqs. 5 and 18 and 

6 If the response e,;T( t) decays sufficiently rapidly with time to be 
square integrable, the T-’ normalization factor in Eqs. 19 and 20, as well 
as Eq. 5, can be omitted. With this normalization, a;, does not depend on 
the observation time, T, as would be the case for the magnocellular re- 
sponse. 
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FIG. 8. Root-mean-square fluctuations of the neuronal response based 
on a single trial. Shown are calculations for the representative magnocellu- 
lar and parvocellular units (Figs. 1 A and 24. Average firing rates ZJ t) 
have been reduced by 55% to ensure that the units operate in the linear 
regime; this corresponds to a reduction in contrast. Ellipses mark the 1 
standard deviation boundary in the space of estimation parameters A, and 
AI with the use ofthe full spike train, i.e., (A,/~J2 + (A,/o,,)~ = 1 (Eq. 
20). Superimposed on each figure is a scatter diagram of the projections for 
the trial-average response of the units to the 128 Walsh patterns (Eqs. 18 
and 19). 

sult in a large increase in the mutual information. We 
plot (Fig. 8) the distribution of the projections for all 128 
Walsh stimuli in the (A 1, &) coordinate plane, calculated 
for our representative magnocellular and parvocellular 
units (Eq. 18), along with the ellipse whose minor and 
major axes correspond to the RMS fluctuations in the esti- 
mation of A, and A2 from a single trial response, i.e., fz 
and fz, respectively (Eq. 20). The estimation error 
represented by the ellipse is seen to be large compared with 
the relative spread in the values of the parameters A, and 
A, for different stimuli, i.e., each ellipse encloses the major- 
ity of the points in Fig. 8. This analysis explains the rela- 
tively poor discrimination performance of a single neu- 
ron, as suggested above. Further, although estimation of 
both A, and A, contribute significantly to the discrimina- 
tion capabilities of the unit, the fluctuations associated 
with the estimation ofA, are relatively large for the parvo- 
cellular unit and result in an ellipse with a particularly 
elongated axis along A,, i.e., vz + vz (Fig. 8). This 
explains why there is little difference between the mutual 
information calculated based onlv on the first mode versus 

that based on the complete spike train for parvocellular 
units (Table 2). 

DISCUSSION 

We use our measurements of the RFs of parvocellular 
units to predict the average temporal response of these units 
to a set of Walsh patterns, as well as to predict the reliability 
of these units for distinguishing between patterns on the 
basis of a single response. These predictions are compared 
with the results of McClurkin et al. ( 199 la). Although our 
predictions provide a vehicle to demonstrate the possibility 
of such comparison, they are necessarily imprecise because 
of differences in the experimental conditions present in the 
two studies. The measurements reported here are per- 
formed on macaque monkeys that are anesthetized and 
mechanically respired. Those of McClurkin et al. ( 199 1 b) 
involve awake rhesus monkeys. In both studies one pixel in 
the stimulus encompasses slightly less than the central re- 
gion of the RF, but detailed comparisons are impossible. 

The emphasis in this work is on the temporal properties 
of units, and thus our data are taken under conditions that 
maximize temporal resolution at the expense of spatial reso- 
lution (Fig. 1). Nonetheless, there are features that can be 
discerned from the spatial modes of the RFs. First, we ob- 
serve that the dominant contribution to both magnocellu- 
lar and parvocellular units has a symmetric unipolar shape 
(Fig. 2). Thus objects with a circular shape are optimal 
stimuli for these LGN units. Second, the center-surround 
structure is present only in the secondary mode (Fig. 2) for 
magnocellular units and generally is not apparent in the 
second or higher order modes of parvocellular units, al- 
though the relatively low ratio of signal-to-noise in the data 
for the latter units (Fig. 1 B) leads to a poor estimate of their 
spatial structure. 

The functional form of the average responses is expressed 
in terms of a small number of temporal modes, known as 
principal components ( Eq. 13). We observe qualitatively 
good agreement between the predicted modes and those 
reported by McClurkin et al. ( 199 la) (Fig. 6). A possible 
significant difference between the two measurements oc- 
curs only for the second mode at long times. This may be 
related to adaptation. The third components are marginally 
significant in both studies. With regard to the contrast of 
the stimuli, we find that a change in the ratio between 
the background rate and the stimulus-related modulation 
by a factor of two (in both directions) does not appre- 
ciably change the shape of the principal components ( AP- 
PENDIX C). 

The reliability of units in discriminating between differ- 
ent patterns is quantified in terms of mutual information. 
We observe good although not precise agreement between 
the predicted values and those reported by McClurkin et al. 
( 199 1 a) (Table 2). Discrepancies between the two sets of 
values may arise from a number of sources. One is the dif- 
ference in experimental conditions, as mentioned above. A 
second source of discrepancy may involve the assumptions 
that we use. The linear-threshold approximation for a neu- 
ron (Eq. 20) is not exact. Further, the statistics of LGN 
units deviate from those of an inhomogeneous Poisson pro- 
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cess, e.g., the neuronal refractory period causes the statistics 
to be non-Poisson shortly after a spike. We note, however, 
that Geisler et al. ( 199 1) shows that the measured deviation 
from Poisson statistics for units in auditory nerve and vi- 
sual cortex essentially does not affect their reliability. A 
final, possible source of discrepancy relates to the method 
used by McClurkin et al. ( 199 1 a) to calculate the mutual 
information from their measured responses (Optican et al. 
199 1). These workers smooth their spike trains with a 
Gaussian filter. The width of this filter affects the estimate 
of the mutual information (Optican et al. 199 1). Recent 
methods introduced by these workers may alleviate this 
problem (Chee-Orts and Optican 1993; Hertz et al. 1992). 

Quantifjving the reliability ofneurons . 
We focused on Shannon’s mutual information as a mea- 

sure of performance for discrimination tasks solely as a 
means to compare our results with those of McClurkin et al. 
( 199 la). Although this measure is well defined (Eq. C2) 
and is used to characterize a number of sensory systems 
(e.g., Bialek et al. 199 1 ), its interpretation in the context of 
discrimination tasks is problematic (Geisler et al. 199 1). A 
different and possibly more natural measure of neuronal 
reliability is the probability of correct response (Geisler et 
al. 199 1; Miller et al. 1993). This indicator reports the frac- 
tion of instances in which the stimulus is correctly identi- 
fied from a single spike train. Its calculation depends on 
relating the best estimate of a stimulus, based on the ob- 
served spike train, to the stimulus itself. With respect to our 
parameterization of visual stimuli in terms of their projec- 
tions on the spatial modes of the unit response (Eq. 18)) the 
probability of correct response measures the area covered 
by the projections of all of the stimuli (dots in Fig. 8) rela- 
tive to the area of the RMS fluctuations in the projections 
(ellipse in Fig. 8). Thus widely dispersed stimuli lead to 
high reliability, and vice versa. 

Optimum rate ofbackgroundjring . 
The reliability with which stimuli can be identified on the 

basis of a single spike train depends on the background rate 
(Eq. 20 and APPENDIX B). When this rate is too low, there is 
a tendency for many stimuli to make the output of the 
neuron quiescent. This leads to poor reliability. On the 
other hand, when this rate is too high, the random nature of 
the spike train contributes excessive noise, and, again, the 
reliability is poor. There is thus an optimal background 
rate, whose value depends on average modulation of the 
spike train by natural stimuli. Interestingly, in our analysis 
of the response of units to Walsh patterns, we find that the 
background rates are typically within 50% of the optimal 
rate. 

interpreted as a finite set of “codebook” vectors that repre- 
sent particular components of the spatial structure of the 
stimulus (Gawne et al. 199 1). Indeed, such an interpreta- 
tion appears natural in the context of a general linear map- 
ping of a stimulus vector, Sa, into a response vector, Z,, i.e., 
2, = C G( a 1 a)&. The singular value decomposition 

(Eq. 4)‘provides a representation for the map, G( a ( a) = 
C &( cy)x,( a), so that the orthogonal response modes 

$JLY) appear to code for the orthogonal input features 
x,(a). It is appealing to interpret this apparent relation in 
the context of experiment by identifying the input label “a” 
as a spatial coordinate of the stimulus and “CY” as the time 
variable t of the response. However, the stimulus is itself 
time dependent and thus contributes to the time depen- 
dence of the output. Thus, in general, we must take a = (7, 
t’) and identify G( cy 1 a) as R( t 17, t’) = R(7, t - t’) (Eq. 2). 
The SVD of R(7, t - t’) yields a continuous spectrum of 
eigenmodes7 and does not provide a finite set of principal 
component vectors that encode the stimulus. This is the 
consequence of the continuous temporal evolution of the 
response to a time-dependent stimulus. A finite set of prin- 
cipal components is obtained only in response to a stimulus 
of fixed duration and depends in an essential manner on the 
particular time course of the stimulus. Consequently, such 
principal components do not form a unique representation 
of the spatial features of the stimulus. Rather, as follows 
from the analysis of the covariance matrix (Eq. 13), the 
principal components correspond to the vectors of maxi- 
mal sensitivity for stimuli of fixed duration. 

Concluding remarks 

In the present work we focus on the implications of the 
observed spatiotemporal RFs for coding and stimulus dis- 
crimination. Another interesting set of questions involves 
the origin of the spatiotemporal structure of the response 
itself. A simple explanation of the structure in terms of the 
feed-forward neural connections within and beyond the ret- 
ina is likely to be incomplete. In particular, the dispersion 
implied by the nonseparability of space and time cannot be 
readily explained by the properties of individual neurons. A 
more plausible explanation involves the dynamical re- 
sponse of an interacting network of neurons, possibly ama- 
crine and retinal ganglion cells, whose spatial RFs overlap. 

APPENDIX A: SINGULAR VALUE DECOMPOSITION 

We consider the expansion of the RF in terms of its SVD (Eq. 
4). The coefficients A, and the functions F,(7) and G,(t) are 
shown to be the eigenvalues and eigenvectors, respectively, of the 
correlation matrices of the measured response. 

The correlation matrix for the spatial modes is 

1 
s 

7‘ 

Is there a “neural code”fiv output jivm the LGN? C(T’, 7) 1 r dtR(7, t)R(7, t) (AI) 
n ” 

We demonstrate that the temporal structure of the neural 
response observed in the experiments of McClurkin et al. is Expansion of the R(3, t) terms in Eq. Al by Eq. 4 and use of the 

consistent with that expected on the basis of our spatiotem- 
orthogonality of the temporal modes (Eq. 5) gives 

poral RF data. The above authors motivate their study of 
the principal components of the response by notions of ’ This is a consequence of the continuous time dependence and time- 
coding, i.e., the set of temporal principal components is translational invariance of R( t (7, t’). 
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c’(T, 7) = c Xz,Fn(7)Fn(7’) WV method. The time between successive spikes is picked up at ran- 
n dom according to the distribution p,(t). The key to this method is 

Multiplication of both sides of Eq. A2 and use of the orthogonality to note that the value of the generating function P,(t) is mono- 

of the spatial modes (Eq. 5) leads to the eigenvalue equation tonic between 0 and 1, and thus the inverse function Pi’ exists. I f  
we pick up a random number RAN from a uniform distribution, 

d2r’Fn(7’)P(7’, 7) = xf, F,(F) (A3) 
the random variable 

t = P,‘(RAN) VW 
Note that c(?‘, 7) is a symmetric matrix whose rank is bounded by 
the number of pixels, L& will be distributed with probability pJ t). Recurrent application of 

Eq. B.5 leads to a set of spike times, li, t2, . . . , ti, . . . , tk, with 0 5 
t1, - - * 9 tk 5 T. In terms of these times the Ith realization of the 
spike train for the cvth stimulus is 

The correlation matrix for the temporal modes is 

Proceeding 
equation 

ct( tl, t) = s d2rR(T, t’)R(T, t) bw 
as above, the temporal modes satisfy the eigenvalue 

1 7‘ 
-7 () s 

dt’G,(t’)~(t’, t) = A;G,(t) (AS) 

where c(T’, 7) is a symmetric matrix whose rank is bounded by the 
number of frames, NT. The rank of both correlations matrices 
must be equal and thus is bounded by the smaller of LL or N,-, 
which is N, = 16 in the present case. 

The measured RFs R(F, t) contain noise, and thus the correla- 
tion matrices have a random component that contributes to their 
eigenvalue spectrum. The number of significant modes in the de- 
composition of a given RF could be estimated for fields measured 
with 16 X 16-pixel stimuli, for which the response of the unit is 
confined to a subset of the pixels. We compare the spectrum for a 8 
X &pixel region over which the unit responded with a 8 X &pixel 
region for which there is no apparent response. The later region 
determines the amplitude of the noisy contribution to the eigen- 
value spectrum. The number of significant modes in the decom- 
position is given by the number of terms in the eigenvalue spec- 
trum whose amplitude is significantly above the noise contribu- 
tion. 

APPENDIX B: REALIZATION OF SPIKE TRAINS 

Here we describe our realization of neuronal spike trains under 
the assumption that the spike statistics of each unit are Poisson, 
with an inhomogeneous rate given by Z,(t). For Poisson statistics, 
the probability density of obtaining a spike train A,(t), with k 
spikes at times tl l . l tk, is 

kY.IW = c w - t,) VW 
i= 1 

Recall that the times t, depend on the stimulus through Z,(t) 
(Eqs. B3 and B4). 

APPENDIX C: MUTUAL INFORMATION 

The reduction in the uncertainty of knowledge of the stimulus 
given the response that encodes the stimulus is measured by the 
mutual information between the spike trains and the stimuli, de- 
noted I( A: S) (APPENDIX E). It is bounded by I( A; S) 5 log, Nw or 
I( A; S) 5 7 bits for the set of Walsh patterns. Technically, the 
mutual information (Cover and Thomas 199 1) between the spike 
trains and the stimuli, I( A; S), is the difference between the en- 
tropy of the train, I{( A), and the conditional entropy of the train 
given knowledge of the stimuli, IZ( A 1 S), i.e. 

In terms of experimental quantities, this becomes 

where Ai (t) is a particular spike train, p( A,) is the probability 
distribution of the spike trains, p( Ai 1 S,) is the conditional proba- 
bility of Ai (t) given knowledge of the stimulus S,(F, t), and the 
index i extends over all spike trains (APPENDIX D). Further 

The space of spike trains is of infinite dimension. We approxi- 

= 4 [ fi 7.,(1.)] exp[ -JoTdtW] (B2) mate the mutual information over this space by I( A; S) Y I( Al, 
AZ, A3; S), where An is the projection of the spike train into the 

Each realization of a set of spike times, tl l . l t k ,  defines a train. 
subspace spanned by the nth principal component, i.e. 

We start by considering the probability, p,( t)dt, that the first spike 
occurs between the times t and t + dt, starting at time 0. This 

1 T 
A, - - 

s T 0 
dtli( t)@,( t) W) 

probability is equal to the probability that no spikes occur between 
0 and t and that a single spike occurs between t and t + dt. Eqzla- Equation C2 shows that the mutual information I( Al, AZ, A3; S) 

tion B2 yields is calculated from the conditional probability p( A,, AZ, A, 1 S). 
This conditional probability is calculated with the use of the 

pJt)dt = exp - [ Jl dt’&(t’)lz.(t) exp[ -Sltdf dtYJt’)]dt 
f 

d 
= dt P,(t)dt 

Monte-Carlo method. For each stim ulus AS,, lo5 spike trains are 
produced as described in APPENDIX B. The first three principal 
components A 1, AZ, A3 are computed for each realization with the 

(B3) use of Eq. C4. The 3-dimensional space of Ai, AZ, A3 is divided 
into 223 N lo4 boxes, and a histogram of the number of realiza- 
tions falling inside each box for a specific stimulus is calculated. 
The probability that the response falls inside the bin is the number 

) of realizations in which the response is inside the bin divided by 
the number of total realizations of the particular stimulus. Be- 
cause the number of realization is finite, the mutual information 

3 calculated with the use of the Monte-Carlo method tends to bias 

P,(t) - 1 - exp - [ j-1 dt’Z,( f )] W 

is the probability generating function for p,(t). 
We construct a spike train with the use of the Monte Carla 

where 
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upward (Optican et al. 199 1). Thus a large number of realization 1 T 
is needed. It is shown (Carlton 1969) that the bias in the mutual 

70 s d~GmuElu) = 6,n (D3) 
information calculated this way is proportional to the number of 
bins divided by the number of trials. Hence the number of trials We estimate A, from a measurement of the response A(t). The 
should be much larger than the number of boxes. We verified that estimator A, is (Eq. 19) 
the result is not dependent on the number of boxes by repeating 1 T 
the Monte-Carlo simulation with an eight-times larger number of A, XI - 

s 
dtA(z)G,(t) - x G, = 20 - +T$ G(tJ+G, (D4) 

boxes. X,T 0 m m l-l m 

The mutual information between the stimulus and the first 1 
where the baseline level Z0 is known and G, = T sl dtG,( t). The 

principal component, I( A, 1 S) (Eq. Cd), is calculated by a similar 
method as is the mutual information between the stimulus and the average of the estimator A ,̂ is obtained by substituting the proba- 
total number of spikes, I( h, S), where h is found by integrating bility density P[ A( t) 1 S] of receiving k spikes at times ti , tz. l . tk 

the spike train, i.e. under the inhomogeneous Poisson assumption (Eq. B2). We find 

1 T XX--- 
T 0 s 

dtli( t ) W) (A,)~~o~~dt~~~~dt~[~z~t~~]e~L[~~Gm~r~~~~i.,] 

We now address the dependence of the mutual information on a 
X Gm +XT 
z() - 1 T 

s 
dtZ(t)G,(t) kgl & ?‘e-Z 

change in parameters of the system. The neuronal output depends 
=-- 

m m 0 [ . 1 
on the background firing rate of the neuron, ZO, as well as details = A, VW of the stimuli, such as the contrast modulation. We estimate the 
effect of changing these factors by parameterizing the average neu- The correlation matrix is 
ron response (Eq. 2) as 1 ,. 

Za(t)=g[aZo+h~d2r~~~bt’l((i.t-t’)S.(i,t’)] (C6) ‘AmAn’=~~~~~l~~~~~~~~~~~~ G(t,) ~Gl 

X 

where a = 1 and h = 1 under normal conditions. 
m I n I n 

m l-l m n J-1 n 

We consider first variations in the background rate and hold h 1 T 
constant. When the background rate in relatively small, i.e., a + 1, =- 

XmXnT2 0 s 
dtZ(t)Grn(t)Gn(t) + AmAn (D6) 

but b = 1, the unit operates close to threshold, and we observe that 
I( A; S) increases with increasing a. At a critical value of a, typi- The covariance matrix (Eq. 20) is 
tally just below 1, I( A; S) reaches maximum and then decreases 

a2,n( 1 Am > > = (kmkn) - (km)(A^n) 

with increasing a. The initial increase occurs because the thresh- 
old effect is strong and many stimuli lead to a suppression of 1 T =- 

s 
dtZ(t)Gm(t)Gn(t) (W 

activity. The later decrease occurs because a high background rate XmXnT2 0 

leads to a higher VahnCe for the neuronal response (E@ 20). The For the case of weak modulation, Z( t ) m Z. and the covariance 
decrease scales as a -’ I2 in the linear limit but is weaker in practice matrix becomes (Eq. D3) 
because of nonlinear effects. Similar results and arguments hold 
for I(& S). 

T 

oln((Am}~~* 
s 

dtGm(t)Gn(t) = rT ‘mn 
20 

09 

Changes in contrast affect the stimulus-related modulation and m n 0 m 

are modeled by varying the parameter b with a = 1. At low levels We thank H. S. Seung and H. Sompolinsky for discussions critical to this 
of contrast, i.e., h < 1, I( A; S) increases linearly with increasing work and W. S. Bialek, R. Desimone, J. A. Hertz, L. M. Optican, Y. Prut, 
contrast. At intermediate levels, but typically with h < 1, the proba- B. J. Richmond, R. A. Stepnoski, and M. Stryker for useful comments. D. 
bility grows only slowly and with diminishing slope. The details of Kleinfeld and B. I. Shraiman thank the Institute of Theoretical Physics, 
the growth vary between units. Similar behavior is observed for University of California at Santa Barbara, for hospitality. 
I( i; S), although the rate of increase is less for a given unit. D. Kleinfeld acknowledges support from the US-Israel Binational 

Last, we examine the effect of changing the overall gain of the Science Foundation, Grant 90-0032 1 l/3. R. C. Reid acknowledges sup- 

neuron, for which we take a = h. An increase in the gain is equiva- port from the National Eye Institute, Grant EY- 10 115, and the Klingen- 

lent to an increase in the number of identical, statistically indepen- stein Foundation. R. M. Shapley acknowledges support from the National 

dent units under the assumption of inhomogeneous Poisson sta- 
Eye Institute, Grant EY-0 1472. 

Address for reprint requests: D. Kleinfeld, AT&T Bell Laboratories, 600 
tistics. We observe that both I( A; S) and I( ii; S) increase mono- Mountain Ave., lC-463, Murray Hill, NJ 07974. 
tonically with increasing values of a. 

Received 6 January 1994; accepted in final form 19 July 1994. 

APPENDIX D: RESPONSE STATISTICS OF 
REFERENCES 

INHOMOGENEOUS POISSON PROCESSES 
ATICK, J. J. Could information theory provide an ecological theory of 

Assume that a stimulus S,(7, t) creates the response A(t), so sensory processing? Network 3: 2 13-25 1, 1992. 

that its trial average is BIALEK, W., RIEKE, F., DE RUYTER VAN STEVENINCK, R. R., AND WAR- 
LAND, D. Reading a neural code. Science Wash. DC 252: 1854-l 857, 

Z(t) = Z. + c X,A,G,( t) PI) 1991. 
m DE BOER, E. AND KOYPER, P. Triggered correlation. IEEE Trans. Biomed. 

and, for a Poisson process, the variance is Eng. VBE-15: 169-179, 1968. 
BRITTEN, K. H., SHADLEN, M. N., NEWSOME, W. T., AND MOVSHON, J. A. 

(A(t)h(t’)) - (A(t))(A(t’)) = Z(t)s(t - t’) uw The analysis of visual motion: a comparison of neuronal and psycho- 
physical performance. J. Nezuosci. 12: 4745-4765, 1992. 

where ( l l 0) signifies trial averaging. The normalization of the CARLTON, A. G. On the bias of information estimates. Psychol. Bull. 7 1: 
eigenvectors from the singular value decomposition, G,(t), is 108-109, 1969. 



SPACE AND TIME 3003 

CHEE-ORTS, M.-N. AND OPTICAN, L. M. Cluster method for analysis of 
transmitted information in multivariate neuronal data. Biol. Cyhern. 
69: 29-35, 1993. 

COVER, M. C. AND THOMAS, J. A. Elements of Information Theory. New 
York: Wiley, 199 1. 

DAWIS, S., SHAPLEY, R. M., AND TRANCHINA, D. Receptive field organiza- 
tion of X-cell in the cat: spatiotemporal coupling and asymmetry. Vision 
Res. 24: 549-56 1, 1984. 

ENROTH-CUGELL, C. AND ROBSON, J. G. The contrast sensitivity of retinal 
ganglion cells of the cat. J. Phvsiol. Lond. 187: 5 17-552, 1966. 

GAWNE, T. J., MCCLURKIN, J. W., RICHMOND, B. J., AND OPTICAN, L. M. 
Lateral geniculate neurons in behaving primates. III. Response predic- 
tions of a channel model with multiple spatial-to-temporal filters. J. 
Neurophysiol. 66: 809-823, 199 1. 

GEISLER, W. S., ALBRECHT, D. G., SALVI, R. J., AND SAUNDERS, S. S. 
Discrimination performance of single neurons: rate and temporal-pat- 
tern information. J. Neurophysiol. 66: 334-362, 199 1. 

GOLUB, G. H. AND KAHAN, W. Calculating the singular values and 
pseudo-inverse of a matrix. SIAM Numerical Analysis 2: 202-224, 
1965. 

HERTZ, J. A., KJPER, T. W., ESKANDAR, E. N., AND RICHMOND, B. J. 
Measuring natural neural processing with artificial neural networks. Int. 
J. Neural Syst. 3, Suppl. 1992: 9 1- 103. 

HOCHSTEIN, S. AND SHAPLEY, R. M. Linear and nonlinear spatial subunits 
in Y cat retinal ganglion cells. J. Physiol. Land. 262: 265-284, 1976. 

JAGADEESH, B., WHEAT, H. S., AND FERSTER, D. Linearity of summation 
of synaptic potentials underlying direction selectivity in simple cells of 
the cat visual cortex. Science Wash. DC 262: 190 1- 1904, 1993. 

JONES, J. P. AND PALMER, L. A. An evaluation of the two-dimensional 
Gabor filter model of simple receptive fields in cat striate cortex. J. 
Neurophy~siol. 58: 1233- 1258, 1987. 

MCCLURKIN, J. W., GAWNE, T. J., OPTICAN, L. M., AND RICHMOND, B. J. 
Lateral geniculate neurons in behaving primates. II. Encoding of visual 
information in the temporal shape of the response. J. Neuroph-ysiol. 66: 
794-808, 199 1 a. 

MCCLURKIN, J. W., GA~NE, T. J., RICHMOND, B. J., OPTICAN, L. M., 
AND ROBINSON, D. L. Lateral geniculate neurons in behaving primates. 
I. Responses to two-dimensional stimuli. J. Neurophysiol. 66: 777-793, 
1991b. 

MCCLURKIN, J. W., OPTICAN, L. M., RICHMOND, B. J., AND GA~NE, T. J. 
Concurrent processing and complexity of temporally encoded neuronal 
messages in visual perception. Science Wash. DC 253: 675-677, 199 lc. 

MCCLURKIN, J. W., ZARBOCK, J. A., AND OPTICAN, L. M. Temporal codes 
in monkey striate cortex for colors, patterns and memories. In: Primary 
Visual Cortex qf Primates. Cerebral Cortex, edited by A. Peters and 
K. S. Rockland. New York: Plenum, 1994, vol. 10, p. 443-467. 

MCLEAN, J. AND PALMER, L. A. Contribution of linear spatiotemporal 
receptive field structure to velocity selectivity of simple cells in area 17 of 
cat. Vision Res. 29: 675-679, 1989. 

MILLER, E. K., LI, L., AND DESIMONE, R. Activity of neurons in anterior 
inferior temporal cortex during a short-term memory task. J. Neurosci. 
13: 1460-1478, 1993. 

MOVSHON, J. A., THOMPSON, I. D., AND TOLHURST, D. J. Spatial summa- 
tion in the receptive field of simple cells in the cat’s striate cortex. J. 
Ph-vsiol. Lond. 283: 53-77, 1978. 

OPTICAN, L. M., GAWNE, T. J., RICHMOND, B. J., AND JOSEPH, P. J. 
Unbiased measures of transmitted information and channel capacity 
from multivariate neuronal data. Biol. Cybern. 65: 305-3 10, 199 1. 

OPTICAN, L. M. AND RICHMOND, B. J. Temporal encoding of two-dimen- 
sional patterns by single units in primate inferior temporal cortex. III. 
Information theoretic analysis. J. Neurophysiol. 57: 162- 178, 1987. 

PALMER, L. A., JONES, J. P., AND STEPNOSKI, R. A. Striate receptive fields 
as linear filters: characterization in two-dimensions of space. In: Vision 
and Visual Dysfunction. The Neural Basis of Visual Behavior, edited by 
A. G. Leventhal. New York: Macmillan, 199 1, vol. IV. 

PINTER, R. B. AND NABET, B. Nonlinear Vision: Determination ofNeural 
Receptive Fields, Function and Nethyorks. Boca Raton: CRC, 1992. 

PODVIGIN, N. F., COOPERMAN, A. M., AND TCHUEVA, I. V. The space- 
time properties of excitation and inhibition and wave processes in cat’s 
corpus geniculatum lateralis ( in Russian). Biojzika 19: 34 l-346, 1974. 

REID, R. C. AND SHAPLEY, R. M. Spatial structure of cone inputs to recep- 
tive fields in primate lateral geniculate nucleus. Nature Land. 356: 7 16- 
717, 1992. 

REID, R. C., SOODAK, R., AND SHAPLEY, R. M. Linear mechanisms of 
directional selectivity in simple cell of cat striate cortex. Proc. Natl. 
Acad. Sci. USA 84: 8740-8744, 1987. 

REID, R. C., SOODAK, R., AND SHAPLEY, R. M. Directional selectivity and 
the spatiotemporal structure of the receptive field of simple cells in cat 
striate cortex. J. Neurophysiol. 66: 505-529, 199 1. 

RICHMOND, B. J. AND OPTICAN, L. M. Temporal encoding of two-dimen- 
sional patterns by single units in primate inferior temporal cortex. II. 
Quantification of response waveform. J. Neurophysiol. 57: 147- 16 1, 
1987. 

RICHMOND, B. J., AND OPTICAN, L. M. Temporal encoding of two-dimen- 
sional patterns by single units in primate visual cortex. II. Information 
transmission. J. Neurophysiol. 64: 370-380, 1990. 

RICHMOND, B. J., OPTICAN, L. M., PODELL, M., AND SPITZER, H. Tem- 
poral encoding of two-dimensional patterns by single units in primate 
inferior temporal cortex. I. Response properties. J. Neurophysiol. 57: 
132-146, 1987. 

RICHMOND, B. J., OPTICAN, L. M., AND SPITZER, H. Temporal encoding 
of two-dimensional patterns by single units in primate visual cortex. I. 
Stimulus-response relations. J. Neuroph-ysiol. 64: 35 l-369, 1990. 

SHAPLEY, R. M., REID, R. C., AND SOODAK, R. Spatiotemporal receptive 
fields and direction selectivity. In: Computational Models of Visual Pro- 
cessing, edited by M. S. Landy and J. A. Movshon. Cambridge, MA: 
MIT Press, 199 1, p. 109- 1 18. 

SHRAIMAN, B., GOLOMB, D., REID, R. C., SHAPLEY, R. M., AND KLEIN- 
FELD, D. On temporal codes and the spatiotemporal response of neurons 
in the lateral geniculate nucleus. Sot. Neurosci. Abstr. 19: 15, 1993. 

So, S. Y. AND SHAPLEY, R. M. Spatial properties of X and Y cells in the 
lateral geniculate nucleus of the cat and conduction velocities of their 
inputs. Exp. Brain Res. 36: 533-550, 1979. 

SUTTER, E. A practical non-stochastic approach to nonlinear time-domain 
analysis. In: Advanced Methods qf Physiological Systems Modelling, 
edited by V. Z. Marmarelis. Plenum, New York: Plenum, 1987, vol. 1, 
p. 303-3 15. 

TOV~E, M. J., ROLLS, E. T., TREVES, A., AND BELLIS, R. P. Information 
encoding and the responses of single neurons in the primate temporal 
visual cortex. J. Neurophysiol. 70: 640-654, 1993. 

VITERBI, A. J. AND OMURA, J. K. Principles ofDigital Communication and 
Coding. New York: McGraw-Hill, 1979. 

W~RG~TTER, F. AND KOCH, C. A detailed model of the primary visual 
pathway in the cat: comparison of afferent excitatory and intracortical 
inhibitory connection schemes for orientation selectivity. J. Neurosci. 
11: 1959-1979, 1991. 


