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We study theoretically how an interaction between assemblies of neu-
ronal oscillators can be modulated by the pattern of external stimuli. It
is shown that spatial variations in the stimuli can control the magnitude
and phase of the synchronization between the output of neurons with
different receptive fields. This modulation emerges from cooperative
dynamics in the network, without the need for specialized, activity-
dependent synapses. Qur results further suggest that the modulation
of neuronal interactions by extended features of a stimulus may give
rise to complex spatiotemporal fluctuations in the phases of neuronal
oscillations.

1 Introducton

A ubiquitous feature of the brain is the presence of widespread, rhythmic
patterns of neuronal activity (Ketchum and Haberly 1991). One aspect of
this activity is gamma oscillations in the visual cortex, with a frequency
near 40 Hz, that are evoked by an external stimulus {Bouyer ef al. 1981;
Freeman and van Dijk 1987; articles in Schuster 1991). Singer and Gray
and co-warkers (Gray et al. 1989; Engel et al. 1991a,b) and Eckhorn et al.
(1988) showed that the timing of these oscillations in a region of cortex
can, under certain circumstances, be influenced by visual stimuli that lie
outside its receptive field. In particular, the oscillations in regions with
nonoverlapping receptive fields are synchronized when the direction of
motion and orientation of stimuli presented to the individual fields are
similar. Conversely, dissimilarity in these features results in a failure to
synchronize. These results suggest that temporal coherence may be used
to encode features of objects in multiple receptive fields.
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Temporal synchrony across the visual cortex (Engel ef al. 1991a) is
most likely mediated by long-range axonal projections within the cor-
tex. These long-range axonal projections appear to connect neurons with
different receptive fields but similar orientation preference (Gilbert and
Wiesel 1989). However, the mechanism by which the stimulus gates the
influence of the long-range connections, and thereby modulates the syn-
chrony of the oscillations, is unclear.

Here we consider theoretically how spatial variations in an extended
stimulus can modulate the interactions in a network of coupled neuronal
assemblies. Each assembly consists of analog neurons that are extensively
interconnected and produce oscillatory output as a result of inhibitory
feedback. Neurons in different assemblies are coupled by relatively weak,
feature-specific excitatory connections. The strength of all connections are
fixed.

Our work was motivated by the resulls of computer simulations
(Sporns et al. 1989; Schillen and Konig 1991; Konig and Schillen 1991;
Wilson and Bower 1991) and analytical studies (Schuster and Wagner
1991a,b; see also Aertsen et al. 1989) that suggest that the magnitude and
possibly the phase of the interaction between assemblies can be mod-
ulated by the stimulus. Other studies, however, suggested that these
effects are insufficiently strong (Sporns et al. 1991). Stimulus-dependent
synchronizing interactions were postulated ad hoc in a previous theo-
retical study of a network of phase oscillators (Sompolinsky et al. 1990,
1991). It was shown that the emergent synchronization in the network
was modulated by the extended properties of the stimulus in a manner
similar to that found in experiments. In the present study we derive the
form of the synchronizing interactions between the assemblies, and their
dependence on spatial variations in the stimulus, from the full dynamics
of the network.

2 Model

Our model describes the cooperative behavior of a network of weakly
coupled clusters of neurcns. Each cluster is analogous to a hypercolumn
in primary visual cortex (e.g., Douglas and Martin 1990). It consists of
neurons that respond to the presence of a stimulus within its receptive
field. For simplicity, we limit ourselves to neurons whose response de-
pends only on a single feature of the stimulus, namely the orientation
of an edge. The time averaged value of this response has a pronounced
peak at a particular orientation, referred to as the preferred orientation
of the neuron. We assume that the preferred orientations are uniformly
distributed among different neurons within each cluster. Each cluster
contains two types of neurons. One, the excitatory cells, makes only
excitatory connections on its postsynaptic target while the second, in-
hibitory cells, make only inhibitory connections. In our architecture, all
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Figure 1: Schematic of the architecture of a network with two clusters. The
open circles represent neurons that form only excitatory connections and filled
circles represent neurons that make solely inhibitory connections. Only a rep-
resentative fraction of the total number of connections is drawn.

of the inhibitory neurons are equivalent and can be replaced by a “global”
inhibitory cell. There are extensive connections between neurons in the
same cluster but only sparse connections between neurons in different
clusters. The architecture of a network with two clusters is shown in
Figure 1.

The dynamics of the network is described by circuit equations (Wilson
and Cowan 1972; Amari 1972; Hopfield 1984):
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where vg{#,t) and Vg(f.t) are the potential and output, respectively, of
the excitatory neuron with orientation preference # in the Rth cluster, N
is the number of excitatory neurons in a cluster, ug(t) and Ug(t) are the
potential and output of the inhibitory neuron, and time, £, is normalized
by the neuronal time constant. The output of each neuron may be in-
terpreted as its instantaneous rate of firing. It depends on the value of
the potential through a nondecreasing function, which we assume is the
same for all neurons:

Vr{f.t) = glog(6. 1)] and Lig(t) = glug(t)] 2.2)

The form of g(x) is taken to be the logistic function g(x} = 1/{1 + exp
[—43(x — xp)]}, where 3 and x; correspond to the gain and threshold
parameters of the neurons, respectively.

The parameters J¢ and ], denote the strength of the synapses from
excitatory and inhibitory presynaptic fieurons, respectively, to excitatory
postsynaptic neurons within the same cluster. The parameter [; denotes
the strength of the synapses from excitatory neurons to the inhibitory
one. We have assumed that these parameters do not depend on the
orientation preference of the the pre- and postsynaptic neuron. On the
other hand, synapses between the excitatory neurons of two different
clusters occur only between neurons with similar orientation preference.
These synapses have strength ¢ and their spatial dependence is specified
by the function K{R — R') = K(|R = R'|}.

The external input consists of two components. A time-independent
part, Iz(f), encodes the orientation of a single edge within the receptive
field of the Rth cluster. It is of the form

Ir(0) = I(l6 — 6o (R)]) (2.3)

where #,(R) denotes the orientation of the stimulus and both # and 4, lie
between 0 and 7. For simplicity, only the excitatory neurons are taken to
have external input. Temporal fluctuations in the input are denoted by
a noise term, £gr(t). We have assumed that the noise is uniform within
each cluster but varies between clusters (Sompolinsky et al. 1991). This
noise competes with the interactions between different clusters and tends
to destroy their relative synchrony. It is taken to be a gaussian variable
with zero mean and variance

{Er(HER (1)) = 26T épp 8{t — F) (2.4)

where T is the strength of the noise relative to that of the intercluster
connections.

A basic assumption in our model is that the neurons within a cluster
interact strongly among each other while the interaction between neurons
in different clusters is weak. This implies that the value of = is small
compared to that of J¢, Jz, and —J;. For this condition, we expect that
the activity of a neuron is determined primarily by its connections to
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neurons in the same cluster and by the stimulus within its receptive field.
The dominant effect of the connections between clusters is to modulate
the synchrony, that is, the relative phase, between neuronal activities in
separate clusters.

In our analysis of the model, we consider first the dynamics of a sin-
gle cluster and ignore the interactions between clusters as well as the
noise. We then derive the effective interaction between pairs of clusters,
including the effects of noise, that results from their long-range connec-
tions.

3 Single Cluster Dynamics

The equations that describe a single cluster are (the label R is suppressed)

b(0.8) = —o(#.£) + JeV(E) + U + 1(8)
Bt = —ult) + V(D) 3.1

where V(1) = (V(#, ), is the excitatory output averaged over all orienta-
tions, with {---}; = [y d6/x. It is also useful to d&fine the average value
of the excitatory potential, v(#) = (v(f, t}}e, and the average value of the
external stimulus, I = {I(8))s.

The potential of each excitatory neuron depends explicitly on its ori-
entation preference only through the external stimulus (equation 3.1).
Hence, neglecting transients, it can be expressed by

oo ) =o(t) +1(A) — 1 (3.2)

The mean output of the excitatory neurons can then be related to the
mean excitatory potential by an instantaneous gain function, that is,
V(#) = Glo(t)], where

Gv) = (glv+1(8) — D)o (3.3)

The equations for the average potentials v(f) and u(t) are found by aver-
aging the equations for the cluster over all orientations (equation 3.1):

o(t) = —o(t)+ [eGo) + Jiglu) +1
u(t) = —ult) +J:Gv) (3.4)

The dynamics of an isolated cluster is particularly simple in that all of the
excitatory neurons have the same input except for a stationary, external
contribution that depends on the orientation preference of the neuron
(equation 3.2).

Figure 2a shows the state diagram for the output (equation 3.4) in
terms of the values of two parameters, the inhibitory synaptic strength J;
and the average external input I, with all other parameters held constant.
The value of the neuronal gain parameter [ was chosen to be large. In
this limit the stable fixed points, whenever they exist, correspond to either
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an “OFF” state or an “ON” state. In the “ON” state all of the neurons
are firing near their saturation level, that is, v(#.t) = v(¢) =~ 1, while
in the “OFF” state all of the neurons are essentially quiescent. In the
region marked “ON + OFF”, the network is stable in either state and the
behavior depends on the initial condition. In the “OSC” region, almost
all initial conditions will lead to oscillatory outputs, while in the “O5C +
ON” region, depending on the initial condition, the outputs will either
oscillate or remain constantly active.

An example of the output for an oscillatory state is displayed in Fig-
ure 2b. All the neurons oscillate with the same frequency, as implied by
equation 3.2, but their average firing rates differ. The excitatory neurons
with the greatest external input, that is, f ~ f, are the first to fire within
a cycle. They are followed by the neurons with weaker external input
and the inhibitory neuron. The output of the inhibitory neuron gradu-
ally quenches the activity in the network until the external input again
charges the excitatory neurons te a potential above their threshold level.
Then the cycle begins anew.

An important characteristic of a cluster is the tuning curve, that is, the
average firing rate of an excitatory neuron, V() = (V(8, t)},, where (-},
denotes an average over time. This quantity is a function of the difference
between 6 and the orientation of the stimulus, #;. An evaluation of V(4)
for different values of 8, yields the tuning curve shown in Figure 2c. For
the particular form of the input we chose, the activity of the neuron is
essentially zero for |6 — 6| > 40°.

4 Phase Description of Interacting Clusters

4.1 Phase Equations. The dynamics of a network of interacting clus-
ters can be greatly simplified in the limit that the intercluster coupling
strength is small, that is, ¢ < 1. First, equation 2.1 can be reduced to a
set of closed mean-field equations that involve only the average excitatory
and inhibitory potentials of the clusters, vz(t) and ug(t), respectively, and
the average input, I (Appendix A). Second, it can be shown (Winfree
1980; Kuramoto 1984) that the average potentials are of the form

vr(t) = vhlwt+ ¢r(t)] +O(e)
ug(t) uslwt + R (8] + Q) 4.1)

where v%(#) and uw%(f) are the limit cycle solutions for the unperturbed
cluster {equation 3.4), w is the frequency of the neuronal oscillation, and
#g(t) is the phase of the oscillation. In the absence of intercluster cou-
plings, each of the 4 (f) are arbitrary constants whose values lies between
O and 27. The presence of a small coupling between the clusters induces
temporal variations in the phases that are slow compared with the period
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of the unperturbed limit cycle, that is, ¥r(t) = O{¢). These variations are
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described by phase equations of the form
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where Tgrre(tiz — ¥r/) represents the pair-wise interaction between the
phases vg(t) and ¢r (f), and 5z(}) is a gaussian noise that originates
from £z(#) and has a variance with an amplitude of T ~ T (see equa-
tion 2.4). The dynamics of the phases depends on the intercluster inter-
action FRR’(L&’R - 'Q"':'Rf).

4.2 The Form of the Interaction between Phases. The interaction
Trre (¢ — 1re) is a periodic function, with period 27 /w. Its form depends
on the structures of the unperturbed limit cycles of the Rth and R’th
clusters. In our model the clusters are identical except for the orientation
of their respective stimuli, 6)(R) and #,(R’). Thus I'rp/(¥z — ¢z} depends
on R and R’ only through the relative orientation Afy = [fo(R) — 6y(R")|.
This implies that Cre (g — ¥} = D{A; Ath), where Ay = wg — ¥re.

We have derived numerically, using the method of Kuramoto (1984),
the form of I'{Ay; Af) from the mean-field equations for the potentials
of the clusters (Appendix A). The results are shown in Figure 3a. Several
features of T'(A4); Afh) are apparent. First, it vanishes for Ay > ., where

Figure 2: Facing page. Aspects of the dynamics of a single cluster. (a) A state
diagram of the output of the network. The fixed parameters for the network
were Jp = 15, Jgr = 12, xg = 1.1, 8 = 3, T = 0, and ¢ = 0 and the stimulus
profile was I{# — 0p) = I + (I, — 1))@ — |/ (/2) with I — I; = 3.5. The value
of J; and the average input I = 1/2(I, + I;) were varied. The boundaries of
existence of the different states were determined from numerical simulations of
equations 3.3 and 3.4. However, since 3 is large, the boundaries for the “ON"
or “OFF” states are approximately straight lines that can be determined from
equation 3.1 by a consistency analysis. In an “OFF” state the maximum potential
of the excitatory neurons must be less than x;. Since v(f) = I(#) in this state, we
require maximum([I(#)] < xo, which yields the vertical line. In the “ON” state
the minimal potential has to be larger than xp. In this state v(#) = Jg + Ji + I(§)
9 = 0and V = U = 1, which leads to J¢ + J; + minimum[{(#)] ~ xp and
yields the oblique line. The asterisk corresponds to the values J; = —7 and
I = —0.25 used in the simulations for b—c. {b) The average firing rate of two
excitatory neurons (upper panel) and the inhibitory neuron (lower panel) found
from a simulation of the equations (equation 2.1) for a network with 60 neurons
using the above parameters, except that we include noise amplitude T = 0.0006
(equation 2.4). We chose the initial conditions such that the neurons did not get
stuck in an “ON" state. The heavy line for the excitatory neurons refers to one
with an orientation preference # — #y = 3° while the thin line refers to one with
@ — 8y = 27°. The period is 27/w = 3.4. (c) The tuning curve, or time-averaged
output of an excitatory neuron as a function of its orientation preference relative
to the orientation of the stimulus. The average was calculated from simulations
of the network with an averaging time of approximately 20 periods. The dots
indicate the orientation preferences of the excitatory neurons featured in b.
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d. is the full extent of the tuning curve (A, = 80° in Figure 2¢). This
can be understood by recalling that only neurons with the same orien-
tation preference are connected by the intercluster couplings. Thus for
Afy > 6, there are no pairs of active neurons that have the same orien-
tation preference and the effective interaction between the clusters must
vanish. Second, T'(A; Afy) is not monotonic in Afy. Third, T(Ay; Ay)
is not an odd function of A+, This implies that the phase equations
cannet be described in terms of a potential, that is, the interaction terms
in equation 4.2 cannot be written in the form dW/dyx. This has impor-
tant consequences on the dynamics of a network with many stimulated
clusters (Discussion).

The form of T'{A; Aflp) indicates that it contains significant contri-
butions from high harmonics in Ay (Figure 3a). We find that a good
approximation is

T(A; Af) = T + Iy sin(A¢ + ) + [z sin(2A4 + an) 4.3)

as illustrated for Af, = 15° in Figure 3a. The zeroth harmonic, with
amplitude 'y, represents the shift in the peried of the oscillations and is
presently irrelevant. The amplitudes I'y and T'> decrease monotonically
with Af, and are zero for Af, > 6, (Fig. 3b). An unexpected result is the
presence of large phase parameters, vy and ny. They are nonzero even at
Afy = 0° and increase with increasing values of Afy. The nonzero value
of the phase parameters appears to originate from the inhibitory feed-
back within each cluster. Specifically, the long-range excitatory synaptic
input to weakly active neurons, that is, those stimulated away from their
preferred orientation, increases the activity of these neurons and, in turn,
increases the activity of the inhibitory neuron. This indirect activation
of the inhibitory neuron contributes an “inhibitory” component to the
interaction between the clusters. For sufficiently large values of Af, all
connections between a pair of clusters involve weakly active neurons and
the inhibitory contributions dominate I'( Ax; Ady).

4.3 Dynamics of Two Interacting Clusters. We consider in detail
the case of only two interacting clusters, for which one can subtract the
equation of yr: (f) from that for vk (t) (equation 4.2) to obtain an equation
for the phase difference Av:(t):

Aty = —T{Av; Ably) + (1) (4.4)

where T(Ay; A8y) = [(A; Afly) — D(=Ay; Afly) and ij(t) = v2n(t). In
the absence of noise, the steady-state solution of equation 4.4 is a fixed
point and the phase difference between the two clusters will approach
a constant, Ay,. The value of Ay, is determined from the constraints
(A, Af) = 0 and IT{A,; Ady)/O(Ay) > 0. Note that I'(Ay; Afy)
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Figure 3: The interaction in a network of weakly coupled clusters. (a) The form
of the effective long-range interaction between pairs of phase variables as a
function of the relative difference in their phase (equation 4.2). Each curve cor-
responds to a different value of A#y, the relative orientation of the stimuli. Note
that the curves for Ay = 75° and 90° are essentially flat. The open symbols
correspond to the form of T{A4;15°) given by its first three harmonics (equa-
tion 4.3). (b} The dependence of the amplitude and phase (radians) parameters
for the first two harmonic of the interaction (a) on fly (equation 4.3).
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is an odd function of Ap. Thus Aw = 0 and = are always zeros of
['(Aw; Afly), although they are not necessarily stable solutions. Further,
the fixed'ijo'mts form degenerate pairs, +A%,, that, except for the cases
Aip, = 0 or 7, correspond to two different states.

The shape of T(Av; Afhy) is shown in Figure 4a for several values of
A#,. For small values the stable state is Ay, = 0. As Afly is increased
(beyond 6° for our parameters) the fixed point moves to a nonzero, inter-
mediate value of Avi,. As Ady is further increased (beyond 36°) the stable
fixed point becomes A, = 7 and remains so until the force vanishes
{beyond 80°). This behavior can be qualitatively understood by approxi-
mating f(&y’;; Afy) in terms of its first two harmonics {equation 4.3), that
is, D(Aw; Ad) = 20 cos a sin{Awr) + 2T cos az sin(2A¢). When the first
harmonic dominates the interaction, as occurs when the value of ¢ is
substantially smaller than 7/2 and I’y is substantially larger than I';, the
phase difference is zero. This situation corresponds to small values of Ady
{Fig. 3b and ¢). Similarly, a value of o near = leads to a phase difference
of 7, as occurs for large values of Ad;. When the value of ¢ is near 7/2,
corresponding to intermediate values of A#), the contribution from the
first harmonic is of the same magnitude of that from the second. This
gives rise to the pronounced anharmonic shape of T'(A; Af) (Fig. 4a)
and to an intermediate phase shift Ay, = cos (=T cos ng /217 cos ax2).

In the presence of noise, 7(f) in equation 4.4, the phase difference Ay
fluctuates in time rather than approach a fixed value. The average phase
coherence between the two clusters can be expressed by the intercluster
correlation function

Cam(7) = BVR(DEVR At + )0 4.5)
VOVEHEVE ()

with §Va(#) = Va(t) — (Vk(t)), and, as before, {---}); denotes an aver-
age over time. The correlation function can be calculated from the un-
perturbed limit cycle of a single cluster and the phase dynamics (Ap-
pendix B). Since the clusters are identical, and the interaction between
them is symmetric, an extremum will always occur at 7 = 0.

The correlation function for several values of A#y are shown in Fig-
ure 4b-d. When both stimuli are aligned, that is, Afy = 0, the

Figure 4: Facing page. Aspects of the dynamics in a network with two clusters.
(a) The force that acts on the difference between two clusters as a function
of their relative phase difference (equation 4.2). Each curve corresponds to a
different value of Afy; those for Afy = 75° and 90° are essentially flat. {(b—d) The
intercluster correlation function of the phase difference between two clusters as
a function of time and different values of Afy {equations 4.5 and B.4). The thin
line refers to a low level of noise, 1/T = 33, and the thick line refers to an
intermediate level, 1/T = 3.3. The network was equilibrated for approximately
150 periods and the correlation functions were averaged over an additional 150
periods.
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correlation has a prominent peak at + = 0 (Fig. 4b). As the relative angle
between the stimuli is increased, Cppi(7) develops a double peak that
reflects the fluctuation of the network between two stable intermediate
phase shifts. The presence of these phase-shifts also causes a minimum
to occur at v = 0. These features are seen at Afly = 30°, for which
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Ay, ~ £1.3 (Fig. 4¢). Note that, in practice, the intermediate phase shift
may show up as a single peak at either a positive or a negative value of
T if the activity of the network is averaged for only a short time. Lastly,
the peak amplitude of Cgr(7) is not a monotonic function of Afy (cf.
Fig. 4b—e). Further, while noise suppresses the amplitude of Cgr/(7} for
any value of A#,, the suppression is greatest for intermediate values (cf.
thick versus thin line in Fig. 4c). These features reflect the nonmonotonic
behavior of [{Aw; Afy) with respect to Ad, (Fig. 3a).

We calculated the equal-time correlation coefficient, Crgrr(0), as a func-
tion of the relative orientation of two stimuli, Afy, and for two levels of
noise, T (Fig. 5). The value of the coefficient rapidly decreases as a func-
tion of the relative orientation for either case. Beyond approximately the
full-width at half-maximum of the tuning curve, 22° for our parameters
(Fig. 20), the coefficient becomes negative as a consequence of the sub-
stantial phase-shifts that occur for large values of Afly. However, as the
magnitude of the interaction is reduced for these angles, the correspond-
ing magnitude of the coefficients is also significantly reduced, particularly
at high levels of noise.

5 Discussion

Our main result is that a weak, fixed synaptic coupling between clusters
of neurons can generate an effective interaction between the phases of
their oscillatory response that depends strongly on the distribution of
activity within each cluster. Thus the interaction is sensitive to the dis-
similarity of the external inputs that stimulate the clusters. This result
implies that stimulus-dependent synchronizing connections, postulated
ad hoc in a previous network model of phase oscillators (Sompolinsky
etal. 1990, 1991), can originate from neuronal dynamics without the need
to invoke mechanisms of fast synaptic modification. This conclusion is
consistent with the results of Konig and Schillen (1991), who simulated
a network with time delayed connections and with the initial reports of
Sporns ef al. (1989).

QOur phase description is strictly valid only in the limit of weak in-
tercluster coupling. In practice, the results of numerical calculations of
the full equations for the model (equation 2.1) indicate that the phase
model qualitatively describes the dynamics of the clusters even when
the synaptic input a neuron receives via intercluster connections is about
5% of its total input (¢ = 0.02];; data not shown). The time it takes to
synchronize the output of two clusters from an initial, unsynchronized
state is relatively short, about three cycles for this strength of interaction
{(insert to Fig. 5).

In contrast to the ad hoc assumption in a previous work (Sompolinsky
et al. 1990, 1991), the present analysis shows that dissimilarity in the ex-
ternal stimuli for each of the two clusters not only reduces the amplitude
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Figure 5: The equal-time intercluster correlation coefficient for the phases dif-
ference between two clusters as a function of A#, {equations 4.5 and B.4 with
7 = 0). This coefficient is a measure of the discrimination capability of the
network. The thin line is for 1/T = 33, while the thick line is for 1/T =3.3. The
inset shows the amplitude of the coefficient during consecutive periods follow-
ing the presentation of stimuli. Equations 2.1-2.4 were simulated numerically
with the parameters used in the phase model (legend to Fig. 2a), 1/T = 3.3 and
¢ = 0.02]¢. Each datum reflects an average over 64 random initial conditions of
the network.

of their effective interaction but also induces a tendency to form phase-
shifts. When only two clusters are stimulated, the phase-shifts appear
in the intercluster correlation function (equation 4.5; Fig. 4c—e). Large
differences in orientation between the two stimuli result in a phase shift
of = (Fig. 4d and e). The phase shifts are less than = for intermediate
differences in orientation and disappear for small differences.

Our results with regard to the occurrence of phase shifts are in appar-
ent contradiction to those of Schuster and Wagner (1990a). These authors
studied the phase interaction between weakly coupled clusters of neu-
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rons and claim that significant phase shifts do not occur. In contrast
to the present work, the clusters in the model of Schuster and Wagner
(1990a) had uniform external inputs and, further, their analysis was re-
stricted to parameters near a Hopf bifurcation where the nonlinearities
in the dynamics are weak. Our results are consistent with the simula-
tions of Schillen and Konig (1991}, where phase-shifts in the correlation
between the output of two clusters are evident (see their Fig. 4).

There is currently little experimental evidence for phase shifts among
the oscillatory responses of neurons in visual cortex [but note Fig. 1g in
Engel et al. (1991b)]. This is in apparent disagreement with the predic-
tions of our model. One possibility is that the limit of weak, long-range
coupling is inappropriate. Yet this limit is suggested from the experimen-
tal evidence on stimulus dependent synchronization across visual cortex
(Eckhorn et al. 1988; Gray et al. 1989). In brief, stimuli outside the recep-
tive field of a neuron may affect the cross-correlogram between it and
other cells but these stimuli do not significantly perturb the magnitude
or form of its autocorrelogram. This suggests that the effective inter-
action between distant neurons affects only their timing and not their
rate of firing. A second possibility is that phase-shifts are particular to
our choice of local architecture (Fig. 1). The numerical studies of Konig
and Schillen (1991) make use of an architecture with solely excitatory
connections plus synaptic delays, rather than inhibitory feedback. As
mentioned above, the output of different clusters in their model exhibits
phase-shifts. Further, Hansel et al. (1992) recently derived the form of the
phase interaction between two Hodgkin-Huxley neurons. They show
that shifts occur for a range of inputs with neurons coupled either by
synapses or electrotonic junctions. Thus a body of evidence suggests
that phase-shifts are a generic feature of the interaction between weakly
coupled neuronal oscillators.

There are a number of experimental issues that relate to the observa-
tion of phase shifts. The fully averaged cross-correlogram is symmetric in
the presence of shifts. However, the cross-correlogram is likely to appear
asymmetric when the averaging is incomplete so that only one of the twa
possible phases, Ay = =Aq), (Fig. 4a), dominates the interaction. Thus
asymmetric cross-correlograms, traditionally interpreted as the signature
of monosynaptic connections (Perkel ef af. 1967), may in some cases reflect
phase-shifted correlograms that have been averaged for too short a time.
A second issue is that fluctuations in cortical activity may make shifts
difficult to detect. The amplitude of the phase-shifted correlograms is ex-
pected to be reduced compared with correlograms without phase shifts
(cf. Fig. 4a and c-e). This may significantly lower the signal-to-noise ra-
tio of shifted cross-correlograms. However, even in the presence of noise
stimulus-dependent phase-shifts should lead to a change in the shape of
the cross-correlogram that depends on the form of the stimuli. Indeed,
cross-correlograms whose shape depends on the orientation of the stimu-
Jus have been observed {Ts'o etal. 1986). Lastly, both noise and variations
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in the intrinsic frequency of the oscillation will broaden the phase-shifted
peaks in the correlogram. This may cause a shifted correlogram to ap-
pear as one with a relatively broad central peak. Such correlograms have
been reported in recent studies (Nelson et al. 1992), although it is unclear
it they result from the mechanism we propose. We suggest that the ex-
istence of phase shifts in the oscillatory part of neuronal responses to
dissimilar stimuli deserves further experimental scrutiny.

The presence of phase parameters can lead to dramatic changes to the
phase dynamics (equation 4.2) when more than two clusters of neurons
are stimulated. While the detailed behavior depends on the form of the
intercluster interaction, [zg (4 — ' ), qualitative aspects of the behavior
may be accounted for by the simplified model

e ir(t) = — > KR — R} J(Afp) sin (4 - v + a{Aby))
R'ZR
+ T}R(f) 5.1)

Here A8y = 6(R) — 6y(R') is the relative orientation of the particular
two of stimuli that act on a pair of clusters. The interaction parameter,
J(Ab), measures the average overlap of the activities in a pair of clusters.
It decreases monotonically with increasing values of Afj) and vanishes
for A#y > 6., where 6, is the full width of the tuning curve. Conversely,
the phase parameter a(A#,) increases monotonically with Ay, As be-
fore, K(R — R') specifies the spatial extent of the long-range connections
(equation 2.1), and 7g(t) is a gaussian noise (equation 4.2). The above
model explicitly expresses the dependence of the amplitudes and phases
of the interaction between the clusters on relative phases of each cluster
on the spatial distribution of gradients in the orientation of the stimuli.

When the phase parameters a(A#,) are zero, as assumed in a previ-
ous work (Sompolinsky ef al. 1990, 1991), the network is unfrustrated. In
the absence of noise the stimulated clusters will synchronize with zero
phase shifts. In contrast, nonzero values of a(Ath) may induce substan-
tial frustration into the network and lead to a stable state with a compli-
cated pattern of phase shifts. Further, the dynamics of the network is not
governed by an energy function and thus the phases may not converge
to fixed values. In cases where the values of phase parameters are large,
such as when the stimulus contains sufficiently large spatial gradients, it
is likely that the phases of each cluster, Wx(#), will fluctuate chaotically
in time.

The phase model proposed here (equation 5.1) is likely to have validity
beyond the specific architecture and dynamics of the circuit in the present
work (Fig. 1). In fact, the simulation results of other circuits proposed for
the 40 Hz oscillations in visual cortex {Sporns et al. 1991; Buhmann and
von der Malsburg 1991; Konig and Schillen 1991; Wilson and Bower 1991)
can be interpreted by this phase model. Thus, the model may provide
a useful framework to probe the nature of spatiotemporal patterns of
neuronal responses and their role in Sensory processing.
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Appendix A

Here we sketch our derivation of the phase description from the full
dynamics of the network. The equations for the dynamics of the full
network (equation 2.1} are first reduced to a set of equations that involve
only the potentials vg{#), and 1g(#), the input I, and the noise £g(t) within
the clusters. This is accomplished by averaging equation 2.1 over all
orientations #, so that

Or(t) = —va(t) + JeVe(B) + 1UR(H) + T+ &r(1)
+ ) K(R—R)Vgl(t)
RIZR
() = —ur(t) + JLVe() (A1)

To close these equations, one must obtain a relationship between the av-
erage output Vg and the average potentials, vg(t) and ug(f). Subtracting
equation 2.1 from equation A.1 and expanding all terms to first order in
¢ yields

Vrit) = G[UR(tH + e Z Y gr: (UR,UR!,' f) (A.2)
RI#R

where

t
YRR’(UR.URf; f) = K(R _ Rl)/ dTei(th)

(&' (up(t) + In(#) — Néglvre(r) + Iz (6) — 1))o (A3)

with ¢'(x) = dg/dx and ég(x) = g(x) — {g(x)}s. Substitution of equa-
tions A.2 and A.3 into equation A.1 gives

or(t) = —vr(t) +JeGlor(t)] + Niglur ()] + I + &rlf)
+ = Z Y g (Vg Ure; H)
Rk
ar(t) = —ug(t) + JeGlor(h] + & 37 Yer (Vg vrii ) (A4

RI#R
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where
Y[{R’(z-’ﬁﬁ Ure; f) = K(R —_ R’)G[UR“)] + YRK’(URv VR, f) (A5)

and G{x) is defined by equation 3.3.

The intercluster interaction term in equation A4 is nonlocal in time.
However, for small values of ¢ the potentials can be approximated by
vr(t) = Uhlwt + (D] and vr(t) = P lwt + Y (t)], where we have used
equation 4.4 and the fact that the phases vary slowly on the time scale of
the period for the oscillations, 2r/w™!. Substituting this form into equa-
tion A.4 results in equations that are now local in time. These equations
represent a system of weakly coupled, two-dimensional limit cycles. By
an appropriate average over the fast variables, they are further reduced
to a set of equations {equation 4.2} that involves only the slow, phase vari-
ables, ¢ (t) (Fig. 3). For details of this reduction, see Kuramoto (1984).

Appendix B .

Here we sketch our calculations of the intercluster correlation function
{equation 4.5) in terms of the phase dynamics. The correlation can be
expressed as

OV wt + @DV (wt + wr + ¢t + 7))
{eVilwt + vr(B]}?):

where {- - .}, denotes averaging over time and over the noise in the phase
equations (equation 4.2) and sV%|wi + vr(f)] = V&[wt + vr{H)] — (Vr(E))
where Vi[wt + g (8] = G{v}[wi + ¥x(1)]} is the solution of the equations
for the unperturbed cycle (equations 2.2, 3.3, and 3.4). If we restrict
ourselves to values of T that are on the order of w !, we can make the
approximation ¢ {t + 7) & 4w (£). In this limit Cgg(7) depends only on
fluctuations in the phase difference A (f) = g (#) ~ ¢l{t).

For the case when only two clusters are stimulated, the form of equa-
tion 4.4 implies that the equilibrium distribution of the phase difference,
a stochastic variable, is of a Gibbs’ form, that is,

D(Ag) o ¢~ W20 (B.2)

(B.1)

CRR’ -

where the potential W{Av") is given in terms of the interaction f(Aq"; Afy)
(equation 4.4) by

A -
W(AY) = ' L Ayl (v Ady) (B3)

We thus arrive at
[ (e 2m)DP) 2 (wdt 28V (wh) Ve (wt + wT + 1Y)
(PVR(D):

Note that this result for Cgr:(7) is valid only for values 7 = O (w™').

Crre(7) = (B.4)
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