
Neuron

Article
Primary Motor Cortex Reports Efferent Control
of Vibrissa Motion on Multiple Timescales
Daniel N. Hill,1,2,3 John C. Curtis,4 Jeffrey D. Moore,1,2 and David Kleinfeld1,2,5,*
1Computational Neuroscience Graduate Program, University of California, San Diego, San Diego, CA 92093, USA
2Department of Physics, Division of Physical Sciences, University of California, San Diego, San Diego, CA 92093, USA
3Institute of Neuroscience, Technical University Munich, Munich 80333, Germany
4The Salk Institute for Biological Studies, San Diego, CA 92037, USA
5Section of Neurobiology, Division of Biological Sciences, University of California, San Diego, San Diego, CA 92093, USA

*Correspondence: dk@physics.ucsd.edu

DOI 10.1016/j.neuron.2011.09.020
SUMMARY

Exploratory whisking in rat is an example of self-
generated movement on multiple timescales, from
slow variations in the envelope of whisking to the
rapid sequence of muscle contractions during a
single whisk cycle. We find that, as a population,
spike trains of single units in primary vibrissa motor
cortex report the absolute angle of vibrissa position.
This representation persists after sensory nerve tran-
section, indicating an efferent source. About two-
thirds of the units are modulated by slow variations
in the envelope of whisking, while relatively few units
report rapid changes in position within the whisk
cycle. The combined results from this study and
pastmeasurements,whichshowthatprimarysensory
cortex codes the whisking envelope as a motor copy
signal, imply that signals present in both sensory
andmotor cortices are necessary to compute angular
coordinates based on vibrissa touch.

INTRODUCTION

The purposeful movement of biological sensors, such as the

motion of the eyes (Leigh et al., 1997) or hands (Shadmehr and

Wise, 2005), is an essential part of perception. What algorithms

incorporate movement as part of perception at the level of

cortex? In particular, over what timescales does motor cortex

direct themotor plant associatedwith a sensorymodality?Motor

cortex may be hypothesized to maintain different pathways for

fast and slow control of the motor plant. This is particularly rele-

vant for the large repertoire of repetitive behaviors, such as those

involved with scanning sensory systems involved with touch,

vision, and even olfaction (Diamond et al., 2008; Nelson and

MacIver, 2006), in which fast rhythmic motion is modulated by

a slowly varying amplitude and/or change in orientation. To

test this hypothesis, we address how trains of spikes from single

units in primary motor (vM1) cortex represent the motion of the

vibrissae during free whisking in rat.

The rodent vibrissa system is a scanning sensorimotor system

in which the sensors, i.e., long hairs referred to as vibrissae,
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rapidly scan a region around the head of the animal (Carvell and

Simons, 1990; Knutsen et al., 2006; Mehta et al., 2007) with an

angular extent that evolves only slowly in time (Carvell and

Simons, 1990; Guic-Robles et al., 1989). The primary sensory

organ of the rat vibrissa system is the vibrissa-follicle complex.

This is composed of pressure-sensitive cells that respond to

external stimulation as well as internal motor drive of a long hair

that originates in the follicle (Szwed et al., 2006). The follicle is

swept rhythmically back and forth by muscles in the mystacial

pad to permit the hairs to touch and probe objects that are

located close to the head of the animal (Kleinfeld et al., 2006).

While the rat can exhibit a variety of whisking patterns (Berg

and Kleinfeld, 2003a; Carvell and Simons, 1995; Mitchinson

et al., 2007; Towal andHartmann, 2006), we focus on exploratory

rhythmic whisking in the absence of exafferent stimuli. Bouts of

rhythmic whisking at a stable frequency in the 5–12 Hz band

are readily elicited in free ranging as well as head-fixed rats (Hill

et al., 2008). This behavior is characterized by temporal structure

over a wide range of timescales, i.e., the extent of individual

whisking bouts on the 1–10 s timescale, changes in the envelope

of vibrissaemovement on the 1 s timescale, and themotion of the

vibrissae on the 0.1 s period of rhythmic motion (Berg and Klein-

feld, 2003a; Carvell et al., 1991; Hill et al., 2008).

The presence of multiple timescales in whisking, together with

the relatively small number of degrees of freedom in vibrissa

control, suggest that vibrissa primary motor (vM1) cortex is an

ideal cortical region to elucidate multiple timescales in motor

control. Past electrophysiological measurements establish that

neurons in vM1 cortex can exert fast control over vibrissa

motion. Stimulation of vM1 cortex in anesthetized animals can

elicit either rapid deflections of individual vibrissae (Berg and

Kleinfeld, 2003b; Brecht et al., 2004) or extended whisking bouts

that outlast the original stimulation (Cramer and Keller, 2006;

Haiss and Schwarz, 2005). Measurement of the local field poten-

tial in vM1 cortex in awake animals indicates that units with

rhythmic neural activity can lock to whisking (Ahrens and Klein-

feld, 2004; Castro-Alamancos, 2006). Complementary work es-

tablished that the firing rate of neurons in vM1 cortex respond

to sensory input (Chakrabarti et al., 2008; Ferezou et al., 2006;

Kleinfeld et al., 2002). The response is band-limited in the sense

that only the fundamental frequency of a periodic pulsatile input

is represented, reminiscent of a control signal used to stabilize

the output of servo-motors (Kleinfeld et al., 2002). Yet, prior
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Figure 1. Experimental Setups and Uniformity of Whisking Behavior

(A) Head-constraint apparatus. The animal’s head is held in place via a bolt

embedded in its headmount. The array of vibrissae is trimmed down to a single

row. Whisking is evoked by placing the home cage just out of reach. A high-

speed camera is used to track vibrissa motion, and embedded microwires are

used to record cortical units and EMG signals.

(B) Apparatus for free ranging animals that explore a raised platform. All other

experimental features are as in (A), except no vibrissae are trimmed and their

motion is not tracked.

(C) Example of primary data taken in a behavioral session, including neuronal

activity from both channels of stereotrode, spike trains from two sorted units,

rectified VEMG of the protractor muscles, and position of the tracked vibrissa.

An * indicates a possible double-pump whisk cycle.

(D) Waveform and spike train autocorrelation for sorted units in (C). Scale bar

represents 500 ms.

(E) Videograph of a head-fixed rat with four tracked vibrissae, spanning rows D

and E and arcs 1 to 5.

(F) The motion of the four vibrissae versus time, superimposed on top of the

motion calculated from only the first mode of the singular value decomposition

(gray).
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work did not address the critical issue of signaling of motor

commands at different timescales, e.g., slow changes in ampli-

tude over multiple whisk cycles, nor did it address the nature

of single unit activity in directing motor output.

We separated whisking behavior into components that vary on

distinct timescales and asked: (1) Do individual single units pref-

erentially code different components of the motion? (2) If so, is

this representation driven by activity from a central source or

by peripheral reafference? (3) How many neurons are required

to accurately represent vibrissa motion in real time? (4) Given
the high connectivity between vM1 and vibrissa primary sensory

(vS1) cortices (Hoffer et al., 2003; Kim and Ebner, 1999), how

does the representation of whisking behavior differ between

these areas?

RESULTS

Rats were trained to whisk either while head-fixed or while freely

exploring a raised platform (Hill et al., 2008). In the head-fixed

paradigm, vibrissa position was monitored via a high-speed

camera and processed to determine the azimuthal angle,

defined as the angle in the horizontal plane and denoted q(t),

versus time. In both paradigms, the electrical activity of the

intrinsic muscle group, primarily responsible for protraction of

the vibrissae, was recorded to form the differential rectified elec-

tromyogram (jVEMGj) (Berg and Kleinfeld, 2003a). The animals

were further implanted with a head stage to record extracellular

potentials in the area identified as vM1 cortex based onmapping

studies (see Figure S1, available online). These signals were

subsequently sorted into single units, as verified through the

consistency of the extracellular spike waveform and the pres-

ence of relative and absolute refractory periods in the spike train

(Figures 1A–1D). In addition, we required the recording of at least

100 whisks for each unit to be accepted for further analysis.

Given these constraints, our results are based on 95 single units

across 11 rats. In ancillary studies with a lesion to the infraorbital

branch of the trigeminal nerve (IoN), an additional 74 single units

across seven animals were obtained.

Rhythmic exploratory whisking behavior consists of extended

bouts of contiguous whisk cycles (Carvell and Simons, 1995).

Qualitatively, the range of motion and the average position of

the vibrissae tend to be similar for adjacent whisk cycles, consis-

tent with past reports (Berg and Kleinfeld, 2003a; Hill et al., 2008),

and thus vary on a timescale that is much slower than that of the

0.1 s whisk cycle (Figure 1C). In addition, the large vibrissae tend

to move in unison during exploratory whisking (O’Connor et al.,

2010a; Welker, 1964), implying that a single set of control signals

is sufficient to uniformly drive the vibrissae. We examined the

latter issue indetail by tracking themotionamongsetsof vibrissae

that spanned rows and arcs (Figure 1E). For the example of four

vibrissae that span two rows and five arcs, we find a high degree

of linear correlationbetweenall vibrissae, as quantifiedby the first

mode of the singular value decomposition which accounts for

0.95 of the variability in themotion across all vibrissae (cf. colored

and gray traces in Figure 1F) (Equations 4 and 5). In general, we

observe that correlations in the motion about the mean position

exceeded 0.90 for vibrissae within or across rows (Figure S2).

Linear Analysis
A minimal analysis is to test if both the slow and fast timescales

of the vibrissa trajectory are coded linearly. We thus calculated

the transfer function, ~HðfÞ (Equation 6), as a function of fre-

quency, f, between unit spike trains and vibrissa position using

epochs that contained whisking and nonwhisking behavior.

The transfer function defines the linear relationship between

the position of the vibrissae and a measured spike train. In prac-

tice, relatively few units tracked the angle of the vibrissae on a

cycle-by-cycle basis. A particularly illustrative example of such
Neuron 72, 344–356, October 20, 2011 ª2011 Elsevier Inc. 345
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Figure 2. Absence of a Strong Linear Relation

between Spike Trains and Whisking Behavior

(A) Example of measured vibrissa position and concurrent

single-unit spike train, together with the vibrissa position

predicted from the spike train. The time-domain repre-

sentation of the transfer function is shown in the lower

right. Blue vertical lines are a visual guide to the corre-

spondence between predicted andmeasured phase. Note

the strong tracking of phase, the weak tracking of ampli-

tude, and the loss of the value of the offset.

(B) The representation of the transfer function in the time

domain.

(C) The same transfer function versus frequency.

(D) The SNR(f) of the transfer function of the same unit.

Horizontal line is cut off for significance.

(E) The SNR(f) for all units. Horizontal line is cut off for

significance.
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data is shown in Figure 2A, together with the predicted whisking

trajectory that was calculated by convolving the measured spike

train with the transfer function (Figures 2A and 2B). The predicted

trajectory captures the phase of the motion rather well, but fails

to capture the envelope of the motion. This result may be quan-

tified by a signal-to-noise ratio, SNR(f) (Equation 9), that mea-

sures how well the transfer function predicts vibrissa position

from the measured spike trains. This function shows a peak

near the whisking frequency but is low outside of this range

(Figures 2B and 2D). Across all units, the value of SNR(f) was

especially small for f �1 Hz (Figure 2E). Thus, individual units

are not reliable linear coders of whisking behavior on slow

timescales.
Decomposition of Rhythmic Whisks
We conjecture that the coding of vibrissa motion involves both

slow and fast control signals. To test this hypothesis, we first

decompose the motion into slow and fast components. A Hilbert

transform is used to extract a rapidly varying phase signal, f(t),

that increases from -p to p radians on each whisk cycle regard-

less of slow variations in amplitude and midpoint (Figure 3A); the

interval (-p, 0) corresponds to protraction and (0,p) corresponds

to retraction. Continuous estimates of the amplitude, qamp(t), and

midpoint, qmid(t), were calculated on each whisk cycle at f(t) =

0 and f(t) = ±p and interpolated for other time points (Figure 3B).

As a consistency check on this parameterization, we recon-

structed the position, bqðtÞ, according to

bqðtÞ= qampcos½fðtÞ�+ qmidðtÞ: (1)

The reconstruction of the vibrissa trajectory yields an absolute

error of 2.7� between q(t) and bqðtÞ as an average across time and
346 Neuron 72, 344–356, October 20, 2011 ª2011 Elsevier Inc.
behavioral sessions (Figure 3A). The high quality

of the fit shows that the motion may be well rep-

resented in terms of a slowly varying amplitude

and midpoint and a rapidly changing phase.

This decomposition of the whisking motion

allows us to construct the marginal probability

density functions for the slow whisking parame-

ters, denoted p(qamp), p(qmid), as well as for the
fast parameter, p(f). This is illustrated for all whisking bouts

associated with the behavioral session from which the data in

the example of Figure 3A was obtained (Figure 3C), along with

the associated cumulative distributions (Figure 3D). The nonuni-

formity in phase is consistent with faster retraction than protrac-

tion in the whisk cycle (Gao et al., 2001). Note that the probability

densities p(qamp) and p(qmid) can vary between behavioral

sessions and depend largely on the row and arc of themonitored

vibrissa (Curtis and Kleinfeld, 2009).

As a check on the stationarity of the slow variations across

animals and trials, we computed the autocorrelations for both

qamp and qmid across all animals and trials (Figure 3E). Both

correlations decay slowly. The midpoint is correlated for well

beyond 2 s, while the amplitude decays with a time constant of

approximately 1 s.

Relation of Single-Unit Activity to Whisking Parameters
How well do the spike trains of single units report changes in the

slow whisking parameters, qamp and qmid, as opposed to fast

changes in phase, f? As illustrated for three example units in Fig-

ure 4, we observe significant modulation of the spike rate for all

three parameters. These firing rate tuning curves are denoted as

l(qamp), l(qmid), and l(f) for modulation by changes in whisking

amplitude, midpoint, and phase, respectively. Interestingly,

strong modulation at one timescale is sometimes accompanied

by weak modulation on the other (e.g., units 1 and 2 in Figure 4).

In general, the firing rates of most units in vM1 cortex are

significantly modulated by at least one slow or fast parameter

of whisking (Table 1). Approximately 65%of all units weremodu-

lated by either amplitude or midpoint (Kolmogorov-Smirnov

test, p < 0.05). The firing rates of significantly modulated units

typically showed a monotonic dependence on amplitude or
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Figure 3. Decomposition of Whisking into Rapidly and Slowly Varying Parameters

(A) Top panel shows vibrissa position along with its reconstruction using a Hilbert transform. Lower panels show the phase, f, as calculated from the Hilbert

transform, along with the amplitude, qamp, and midpoint, qmid, of the envelope calculated from individual whisk cycles. Broken vertical lines indicate wrapping of

phase from p to –p.

(B) Schematic of the different angular parameters and their relation to phase in the whisk cycle for rhythmic motion.

(C) Probability distribution functions for the phase, midpoint angle, and amplitude for all bouts in a session that included the data in (A).

(D) Mapping from angles to percentiles for the slow variables for the data in (B).

(E) Correlation coefficient of amplitude and midpoint as a function of time lag. Data are an average over rats (n = 5) and behavioral sessions (n �12,000 whisks).
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midpoint. A compilation of the change in rate, i.e., maximum

minus minimum rate, is plotted against the average rate for all

units (Figures 5A and 5C). The firing rate could increase or

decrease with either signal such that the average tuning curve

across all units was nearly flat (Figures 5B and 5D). The mean

rate of neurons that encoded amplitude was significantly related

to the slope of the rate versus amplitude curve, with an average

mean firing rate of 15 Hz for cells that increased their firing

rate with amplitude and 4.6 Hz for cells that decreased their firing

rate with amplitude (Figure 5A) (Kolmogorov-Smirnov test, p <

0.05). Nonetheless, the fidelity of reporting amplitude and

midpoint cannot be increased by a simple summation of spikes

across the population of neurons. Lastly, we found no obvious

correlation between the modulation by amplitude and by

midpoint in single units.

In contrast to the high yield of units modulated by slow param-

eters, only 22% of all units showed a firing rate that was sig-

nificantly modulated by phase in the whisk cycle (Kuiper test,

p < 0.05). The tuning curve for l(f) is parameterized in terms of

its peak at the preferred phase in the whisk cycle, denoted fo.

There was no significant bias in the distribution of preferred

phases. The relative modulation appears large in many cases

because the baseline rate was quite small for many of these

cells. Most of these phase-sensitive units were also modulated

on the slow timescale (Table 1). Lastly, while fast spiking units

make up about 20% of recorded cells (Figure S3), they are
50% more likely to show significant modulation with phase or

one of the slow variables.

We tested for the possibility that the coding properties of units

in vM1 cortex were affected by head fixation. The above analysis

was repeated using data from free-ranging animals, for which

the jVEMGj of the intrinsic muscles served as a surrogate of

vibrissa position. We found that the modulation of the envelope

of the jVEMGj with the whisk amplitude was similar to that using

videographic data with head-fixed animals (Figure S4). Further,

the reliability of the phase variable was unchanged using data

from the jVEMGj versus videographic data (Figure S4).

Our past studies focused on coding of motion in vS1 cortex, in

which past work emphasized the role of phase coding. To

compare the representation of self-motion in sensory versus

motor cortices, we reanalyzed data from vS1 cortex that

involved epochs of whisking in air (Curtis and Kleinfeld, 2009)

in free-ranging animals (71 single units from 7 rats). In contrast

to our results for vM1 cortex, relatively few units in vS1 cortex

coded only slow changes in the amplitude of the jVEMGj
compared with units coding only phase, i.e., 15% versus 34%,

respectively. This reanalysis supports the essential role of vM1

cortex in representing the envelope of whisking (Figure S5).

While we found that units could increase or decrease their

relative rate of spiking as a function of increases in amplitude

ormidpoint (Figures 4, 5A, and 5C), it is possible that the baseline

rate of firing could be gated during whisking versus nonwhisking
Neuron 72, 344–356, October 20, 2011 ª2011 Elsevier Inc. 347



Table 1. Modulation of Firing Rates

Condition

Number

of Units

Percentage of Population Significantly

Modulated

Fast Variable

Only (Phase)

Slow Variable

Only (Amplitude,

Midpoint, or EMG)

Both Fast

and Slow

vM1, intact 95 6 51 16

vM1, nerve

transected

74 7 61 9

vS1, intact 71 34 15 13

Figure 4. Modulation Profiles for Three Example Units in vM1 Cortex

The three columns are profiles of units that show different relative modulation

by fast and slow signals. The respective stereotrode waveforms (scale bar

represents 500 ms) and spike train autocorrelations are shown at top. Each

plot is calculated by dividing the distribution of the respective signal at spike

time by the distribution of that signal over the entire behavioral session. Green

lines are fits from the Bayesian adaptive regression splines smoothing algo-

rithm along with the 95% confidence band. The symbol fo labels the peak of

the tuning curve, or the preferred phase for spiking within the whisk cycle.
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epochs. To test for this, we compared the rates between whisk-

ing and nonwhisking periods. We find that the spike rates in vM1

cortical units are unchanged on average (Figure 5G). This finding

is similar to that reported for units in vS1 cortex during periods of

whisking compared with periods of quiet (Curtis and Kleinfeld,

2009) (Figure S5). Thus, whisking alters the timing of spikes rela-

tive to the whisking behavior but does not change the overall rate

of spiking.

Population Averaging for Reliable Decoding
of the Vibrissa Trajectory
No individual single unit reports all aspects of the whisking

trajectory in a reliable manner. We thus estimate the size of the

population required to report the absolute angle of vibrissa posi-

tion in real time. The accuracy of the vibrissa trajectory recon-

structed from the spike trains of increasing numbers of neurons

may be estimated from an ideal observer model. The observer
348 Neuron 72, 344–356, October 20, 2011 ª2011 Elsevier Inc.
serves as a hypothetical neuron, or network of neurons, that

decodes the spiking output of neurons that encode vibrissa

motion. For the cases of amplitude and midpoint, we assume

that the information is encoded by Poisson spike count, where

the mean firing rate of each cell is based on our measured tuning

curves (Figures 4 and 5). We assume an integration time of

0.25 s, a behaviorally relevant time period (Knutsen et al.,

2006; Mehta et al., 2007; O’Connor et al., 2010a), over which

the amplitude and midpoint are relatively constant (Figure 3E).

In the case of phase, we assume that the information may be

decoded using a linear filter (Figure 2) that defines the accuracy

of a simulated neuron.

The results of our simulations indicate that the amplitude,

midpoint, and phase of whisking can be accurately decoded

from a modestly sized population of units (Figure 6A). Either

amplitude or midpoint can be decoded to within a mean error

of dqamp z2� and dqmid z2� from simulated population activity

of nearly 300 neurons, corresponding to relative errors of about

5%. A simulated population based on themost highly modulated

unit was not necessarily a better encoder than a population rep-

resenting all recorded units (Figure 6A). This occurs since a highly

modulated unit may still poorly encode a signal over a particular

range of values.

For the case of phase decoding, we observed that a small frac-

tion of units showed substantially greater phase modulation than

other cells in the population. A decoder that utilizes six copies of

the most phase-modulated cell could estimate phase to within

a mean error of p/5 radians, or 10% of the whisk cycle (Fig-

ure 6A). These results suggest that coding of the rapidly

changing phase in vM1 cortex may involve a small number of

highly modulated units. In toto, a population on the order of

a few hundred cells is required to accurately report the ampli-

tude, midpoint, and phase of whisking on the timescale of 0.25 s.

How realistic is the assumption of a Poisson spike process?

We estimate the Fano factor, which measures deviations in the

variance from a Poisson process. The Fano factor is the ratio

of the variance in the spike rate to the mean rate, i.e.,

Fh

*D
ðexpected spike count� actual spike countÞ2

E
expected spike count

+
(2)

where h/i denotes an average across all intervals and F = 1.0

for a Poisson process. We estimated these quantities over the

assumed integration interval of 0.25 s. For each interval, either

the mean amplitude or midpoint was used to determine the ex-

pected spike count for a particular unit. We found that the
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Figure 5. Summary of the Coding of Fast and Slow Timescales by

Single Units

(A) Scatter plot of the modulation depth, defined as the maximum rate minus the

minimumrate, foramplitudeversusmeanspike rate foreachunit (n=31).Different

colors distinguish increasing versus decreasing spike rate with an increase with

angle, as noted; NS indicates data points for no significant modulation.

(B) The mean tuning curve for amplitude across the population. Data for slow

variables were transformed into percentiles before averaging, as different

vibrissae show distinct ranges of amplitude. The upper scale is the average

angle for a given percentile (Figure 3D).

(C) Scatter plot of themodulation depth formidpoint versusmean spike rate for

each unit (n = 31).

(D) The mean tuning curve for midpoint across the population. The upper scale

is the average angle for a given percentile (Figure 3D).

(E) Polar plot of the normalized modulation depth, defined as the maximum

rate minus the minimum rate divided by the mean rate, as a function of the

A B

Figure 6. Estimated Accuracy of Coding as a Function of Population

Size

(A) Simulations of neuronal populations were based either on the entire

measured data set (black line) or only on the unit with the highest recorded

modulation (gray line). Errors were drawn from 1000 simulations of each value

and weighted by their prior distributions. Top row: Mean error for amplitude

estimation assuming a firing rate code and an integration time of T = 0.25 s.

Middle row:Mean error formidpoint estimation assuming a firing rate code and

an integration time of T = 0.25 s. Bottom row: Mean error for phase estimation

assuming a linear code.

(B) Histograms of the Fano factors computed in a 0.25 s window for all units;

F = 1.0 is the limit of a Poisson counting process. Blue segments correspond to

regular spiking units while red segments correspond to fast spiking units

(Figure S3).
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variance is linearly proportional to the mean, l, but with an

average value of F = 1.47 (Figure 6B). The deviation from a Pois-

son processwas not the result of too small of a sample (Eden and

Kramer, 2010) and applied to both regular and fast-spiking units

(cf. red versus black bars in Figure 6B; Figure S3). To the extent

that the read-out of vM1 cortex is based on a spike count, as

opposed to the temporal signature of spiking, these results imply

that a population average based on a Poisson spike model will

underestimate the number of required neurons. This error is

small, nominally a factor of F.

Origin of the Representation of Self-Motion
All aspects of vibrissa motion are represented in vM1 cortex of

rats (Figures 4 and 5), albeit in a weak and distributed manner.
preferred phase for the unit, fo. Only points for significantly modulated units

are plotted (n = 12).

(F) The mean tuning curve as a function of phase across the population.

(G) Firing rate of all units during whisking behavior recorded by videography

(n = 32) or through the jVEMGj (n = 69).

Neuron 72, 344–356, October 20, 2011 ª2011 Elsevier Inc. 349
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Figure 7. Summary of the Coding of Fast and Slow Timescales for

Units in vM1 Cortex after Transection of the IoN

(A) Diagram of the IoN branch of the trigeminal nerve, along with the mean LFP

response in vS1 cortex to 50 puffs to the vibrissae shown before and after

bilateral nerve transection.

(B) Scatter plot of the modulation depth of amplitude versus mean spike rate

for all units after nerve transection (n = 78); NS indicates data points for no

significant modulation.

(C) The mean tuning curve for amplitude across the population. Data for slow

variables were transformed into percentiles before averaging, as different
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Do these signals arise from proprioception, motor commands, or

efferent copy? To address this, we disrupted sensory feedback

to vM1 cortex in a set of animals through bilateral transection

of the infraorbital branch of the trigeminal nerve (IoN). This nerve

branch is thought to be the only source of proprioceptive feed-

back from the vibrissae as the associated facial muscles do

not contain muscle spindles (Arvidsson and Rice, 1991). Each

transection was verified by a loss of the local field potential

(LFP) response in vS1 cortex to air puffs against the face (Fig-

ure 7A). In two animals, we confirmed that this response did

not recover within the first 2 weeks after transection.

The encoding of vibrissa motion was similar before and after

nerve transection. Both fast and slow timescales were repre-

sented (cf. Figures S6 and S4), and the percentage of cells that

encoded the slow versus fast timescales was not significantly

different in transected versus normal animals (Table 1). A compi-

lation of the modulation in spike rate is qualitatively similar for

the animals with transected IoNs versus normal animals (cf.

Figures 7B, 7D, and 7F with Figures 5A, 5C, and 5E). As for

normal animals, the firing rate could increase or decrease with

either signal such that the average tuning curve across all units

was nearly flat (cf. Figures 7C, 7E, and 7G with Figure 5B, 5D,

and 5F). Also, as in normal animals, the mean rate of neurons

that encoded amplitude was significantly related to the slope

of the rate versus amplitude curve, with a mean firing rate of

22 Hz for cells that increased their firing rate with amplitude

and 7.0 Hz for cells that decreased their firing rate with amplitude

(Figure 7B). These data show that the signatures of vibrissa

motion in vM1 cortex do not require sensory feedback through

the trigeminal nerve. Lastly, the mean firing rate during whisking

was greater in transected versus normal animals (cf. Figure 7H

with Figure 5G), and this was matched by a similar increase in

the average slopes of the tuning curves l(qamp) and l(qmid). As

a consequence of this balance the population analysis was

essentially the same in the case of transection (Figure S7).

DISCUSSION

We have addressed the issue of coding vibrissa position in head

centered coordinates. Two timescales are involved, a slow,

�1 s scale associated with changes in the amplitude and

midpoint of the envelope of whisking motion and a fast scale

associated with rhythmic variation in position (Figures 2 and

3). We find that a majority of single units in vM1 cortex code

for variation in amplitude and midpoint, while a minority of units

coded the phase of whisking (Figure 4). None of these signals
vibrissae show distinct ranges of amplitude. The upper scale is the average

angle for a given percentile (Figure 3D).

(D) Scatter plot of the modulation depth of midpoint versus mean spike rate for

all units after nerve transection (n = 74).

(E) The mean tuning curve for midpoint across the population. The upper scale

is the average angle for a given percentile (Figure 3D).

(F) Polar plot of the normalized modulation depth as a function of the preferred

phase for the unit, fo; only points for significantly modulated units are plotted

(n = 12).

(G) The mean tuning curve as a function of phase across the population.

(H) Firing rate of all units during whisking behavior (n = 78).
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are abolished or modified by a total block of the trigeminal

sensory input, implying that they are generated by a central

source (Figure 7).

Themodulation of the firing rate of different units in vM1 cortex

by the slowly evolving parameters of whisking is strong (Figure 4).

Yet, the firing rates of these cells are low so that the contribution

of individual units to decoding is low (Figures 5 and 6). This

situation is similar to the case of units that code the direction

of arm movement in motor cortex in monkey (Schwartz et al.,

1988). Nonetheless, our ideal observer analysis shows that pop-

ulations of a few hundred such cells can report the amplitude and

midpoint of the vibrissae with a less than 5% error (Figure 6).

We chose to extract the amplitude, midpoint, and phase of

whisking with a modified Hilbert transform (Figure 3A). This

method is sensitive to changes in the phase, as opposed to

the assumption of linear phase when fitting a sinusoid and offset

to each whisk (Curtis and Kleinfeld, 2009; Gao et al., 2001; Le-

iser and Moxon, 2007). The decomposition of the whisking

trajectory into these parameters appears to be behaviorally rele-

vant (Figure 3). Further, except for rare occurrences such as

double pumps, i.e., a slight retraction during protraction fol-

lowed by further protraction to complete the whisk cycle

(Moxon, 2008; Towal and Hartmann, 2008; Welker, 1964) (* in

Figure 1C), the phase was a monotonic function of time in the

vast majority of our data. However, it is important to note that

ours is not the only possible decomposition of whisking

behavior. Units are also highly modulated by other slowly

varying parameters, such as frequency of the whisk cycles

and the mean speed of vibrissa motion. Further, the control of

midpoint and amplitude are coupled through the mechanics of

the mystacial pad (Hill et al., 2008; Simony et al., 2010). Lastly,

while the parameterization of vibrissa motion into fast and

slow components may still be appropriate under conditions of

arrhythmic whisking (Mehta et al., 2007; O’Connor et al.,

2010a; Towal and Hartmann, 2006), the notion of phase breaks

down under such motion.

Past studies have addressed signaling in vM1 cortex during

self-generated whisking. Measurement of multiunit spike trains

showed that groups of neurons increase their rate of spiking

during periods of whisking versus nonwhisking (Carvell et al.,

1996) which is consistent with an increase in local field potential

activity found at the onset of whisking bouts (Friedman et al.,

2006). The present results show that, in fact, both increases

and decreases in rate occur so that the average rate across

the population is little changed (Figures 5B, 5D, and 5F).

Measurements of the local field potential also yield a weak but

significant correlation of the LFP with rhythmic motion of the

vibrissae (Ahrens and Kleinfeld, 2004). This implies that the

current flow from different units sums to a nonzero value. Here

we found single units in vM1 cortex whose spiking is locked

to the cycle-by-cycle change in vibrissa position (Figures 4

and 5E). The spike rates for different units have peaks at

different preferred phases, yet there is no significant bias across

the population of units for the cases of both an intact and a bilat-

erally transected IoN (Figures 5F and 7G). A lack of bias was

also seen for the preferred phase of the sensory response in

vM1 cortex to periodic stimulation of a vibrissa (Kleinfeld

et al., 2002).
Composite View of Sensorimotor Processing
How does the response of single units in vM1 cortex compare

with those in vS1 cortex during rhythmic whisking? The motor

area predominantly codes the slowly varying amplitude and

midpoint of whisking (Figure 5). In contrast, the majority of single

units in vS1 cortex report a rapidly varying signal (Crochet and

Petersen, 2006; Curtis and Kleinfeld, 2009; de Kock and Sak-

mann, 2009; Fee et al., 1997; Lundstrom et al., 2010; O’Connor

et al., 2010b) that corresponds to the phase of the motion during

rhythmic whisking (Curtis and Kleinfeld, 2009). As in the visual

system (Fairhall et al., 2001), phase coding offers efficiency, in

that all neurons sensitive to self-motion adapt to the envelope

of whisking and thus code the position of the vibrissae in normal-

ized coordinates. This is in contrast to a system based on tuning

to absolute angle in which only neurons sensitive to the particular

range of motion would be active. However, phase coding is

ambiguous in that the absolute position is not coded by the firing

rate. We conjecture that phase information in vS1 cortex is

combined with envelope information in vM1 cortex to compute

the absolute position of objects upon touch (Equation 1). The

locus of this interaction remains to be found.

The slow components of the envelope of whisking are efferent

in origin in both vM1 and vS1 cortices (Fee et al., 1997) (Figure 7).

In contrast, the phase signal appears to originate centrally in

vM1cortexbut isderived fromperipheral reafference invS1cortex

(Fee et al., 1997), save for a subthreshold component that has

a central origin (Ahrens and Kleinfeld, 2004). It is an open issue

as to where any differences between the internally generated

phase and the sensed phase are computed. Anatomically, this

couldoccur ineither vM1or vS1cortices, aswell as inposteriome-

dial (PO) thalamus (Figure8).Adefinedrole for vM1cortex involves

gating of the sensory stream along the pathway through PO thal-

amus, via the disinhibition of units in zona incerta (Urbain and

Deschênes, 2007) (Figure 8). Units that respond to the envelope

of whisking are well suited to readily control the flow and transfor-

mation (Ahissar et al., 2000) of signals through PO thalamus.

Rhythmic motion appears to be a dominant mode of whisking

(Berg and Kleinfeld, 2003a; Carvell and Simons, 1995), yet recent

behavioral studies document how rodents use nonrhythmic

motion to determine the relative position of a pin presented to

one side of the face (Mehta et al., 2007; O’Connor et al.,

2010a). While the angular position of the vibrissae changed

rapidly, their maximumexcursion evolved only slowly. The slowly

varying amplitude andmidpoint, qamp and qmid, are valid descrip-

tions of vibrissa motion under conditions of rhythmic and non-

rhythmic whisking. The phase, f(t), is an inherently rhythmic

quantity that also describes the relative range of vibrissa motion.

In this sense phase describes both rhythmic and spatial aspects

of whisking behavior. In the case of nonrhythmic whisking phase

loses meaning in terms of dynamics, but the spatial component

remains, i.e., rats tend to limit the spatial extent of whisking in a

task-dependent manner (Knutsen et al., 2006; Mehta et al.,

2007). Additionally, phase can be considered as a rapidly varying

nonrhythmic variable, which suggests why different sensory

(Curtis and Kleinfeld, 2009; Fee et al., 1997) as well as motor

neurons (Figure 5E) have a multiplicity of preferred phases,

when, for a purely rhythmic system, only a single phase is

needed.
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Figure 8. Diagram of Signal Flow within Loops that

Encompass vM1 Cortex in the Vibrissa Sensori-

motor System

We show only the subset of sensorimotor pathways that

encompass the known flow of spike-based signaling in the

rodent (Chakrabarti and Alloway, 2006; Kleinfeld et al.,

2006; Urbain and Deschênes, 2007); the diagram is thus

incomplete, especially with regard to basal ganglia (Hoffer

et al., 2005) and cerebellar circuits (Lang et al., 2006;

O’Connor et al., 2002). Minus signs mark inhibitory path-

ways. The brainstem nuclei include a hypothetical central

pattern generator. Symbols: VPM, ventral posterior medial

thalamus; PO, posterior medial thalamus; ZImot and ZLvib,

motor and vibrissa subdivision, of ventral zona incerta,

respectively. Functional projections are labeled in blue.
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The present experiments indicate a central origin for the report

of both slow and fast components of whisking by single units in

vM1 cortex (Figure 7), in contrast to the case for vS1 cortex (Fee

et al., 1997). Yet, our results do not distinguish if these signals

originate within vM1 cortex per se or if they are generated in

a downstream motor area that projects to vM1 cortex through

an as yet unknown ascending pathway. A central origin for the

generation of rhythmic whisking, as one of many potential

rhythmic sources, is supported by evidence that ablation of

vM1 cortex disrupts the regular pattern of whisking (Gao et al.,

2003). Complementary studies show that rhythmic microstimu-

lation of vM1 cortex in awake and aroused animals leads to the

two-phase alternation of protraction with retraction seen during

exploratory whisking (Berg and Kleinfeld, 2003b; Castro-Ala-

mancos, 2006). Protraction occurs via efferent pathways from

vM1 cortex to the facial motoneurons, while retraction may

involve a corticocortical pathway through vS1 cortex (Matyas

et al., 2010) that descends to the trigeminal nuclei and then

projects to the motoneurons (Nguyen and Kleinfeld, 2005).

Further, the possibility that neurons in vM1 cortex can directly

drive rhythmic motion of the vibrissae (Cramer and Keller,

2006; Haiss and Schwarz, 2005), and not merely modulate the

output of a hypothesized central pattern generator for whisking

(Gao et al., 2001), is consistent with direct, albeit limited, projec-

tions from vM1 cortex to the facial motoneurons (Grinevich et al.,

2005). Drive to the vibrissae can thus be created at multiple

levels, from brainstem nuclei that include a hypothetical central

pattern generator through cortex, and integrated by vibrissa

motoneurons of the facial motor nucleus (Figure 8).

What advantage is associated with coding motion in terms of

a slowly varying envelope and a rapidly varying carrier, even

a nonrhythmic one? One possibility is that vibrissa control is split

into channels that support different computational roles. The

midpoint of motion corresponds to the direction of greatest

attention by the rat, not unlike foveation in vision. Biophysically,

it represents a differential level of activation among populations

of vibrissa motoneurons that control protraction versus retrac-

tion (Hill et al., 2008). The amplitude defines the range of the

search and may gate the sensory stream along the pathway

through PO thalamus, presumably via the disinhibition of units
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in zona incerta (Urbain and Deschênes, 2007) (Figure 8), to

control the flow and transformation (Ahissar et al., 2000) of

signals through PO thalamus. Our analysis suggests that the

slow and fast drive are separate channels in the brainstem (Fig-

ure 8). This is consistent with recent studies of the differential

control of the amplitude and phase of motoneurons in the facial

motor nucleus (Pietr et al., 2010) and with the observation that

direct stimulation of the superior colliculus leads to a sustained

protraction of the vibrissae, while stimulation of M1 can lead to

rhythmic motion (Hemelt and Keller, 2008). A further advantage

of maintaining a rhythmic channel with independently controlled

amplitude is that whisking can more effectively phase lock

(Grannan et al., 1993) with other rhythmic orofacial behaviors.

Such locking is known to exist in sniffing (Welker, 1964). In

fact, coordination among orofacial nuclei is an essential aspect

of breathing and feeding (Travers, 1995).
EXPERIMENTAL PROCEDURES

Subjects

We report data from 18 adult female Long-Evans rats (Charles River) with

masses of 200–300 g. Thirteen of these rats were acclimated to head-restraint

(Figure 1A) and five were trained to whisk on a raised platform (Figure 1B) (Fee

et al., 1997; Ganguly and Kleinfeld, 2004; Hill et al., 2008). Successful training

was followed by the chronic implantation of a microdrive (Curtis and Kleinfeld,

2009; Venkatachalam et al., 1999) above the area of frontal cortex stereotax-

ically identified as vM1 cortex (+2.5 mm A-P and 1.5 mm M-L relative to

bregma) (Kleinfeld et al., 2002). In select animals, the intrinsic papillary

muscles of the mystacial pad were implanted with pairs of microwires to

measure the electromyogram (EMG) (Hill et al., 2008). In animals conditioned

to head restraint, a restraining bolt was also implanted posterior to the

microdrive.

In sevenof thesubjects trained for head restraint, the infraorbital branchof the

trigeminal nerve (IoN)was bilaterally transected at its entrance to the orbit (Berg

and Kleinfeld, 2003a). Complete transection of the nerve was verified by the

extinctionof theLFP in vS1cortex in response topuffsof air against thevibrissae

(Figure7A).After thesurgical procedure, no recoveryof sensationwasobserved

as verified by the inability of the animal to cease whisking on contact with an

object. All procedures were performed under isoflurane anesthesia.

The care and experimental manipulation of our animals were in strict accord

with guidelines from the US National Institutes of Health and have been re-

viewed and approved by the Institutional Animal Care and Use Committee of

the University of California, San Diego.
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Data Acquisition

Behavioral sessions consisted of trials of 10 to 30 s in duration. Whisking

behavior was induced during these trials by presentation of the home cage

just out of reach of the vibrissae (Ganguly and Kleinfeld, 2004; Premack and

Shanab, 1968). To facilitate vibrissa tracking in head-restrained animals, the

vibrissae were trimmed to the base except for three vibrissae in row C. A

high-speed camera (Basler A602f) was used to monitor vibrissa position with

a 300 Hz frame rate at 150 mm spatial resolution. Vibrissa position was ob-

tained from each frame with one of two semiautomated algorithms written in

MATLAB (Hill et al., 2008; Knutsen et al., 2005). The angle is formed between

the anterior-posterior axis of the rat and a line drawn through the image of the

vibrissa that extends from the skin to a point 5 mm further up the shaft. The

time series of the angle was low-pass filtered at 25 Hz (4 pole Butterworth filter

run in forward and reverse directions) and upsampled to 1 kHz. We included

only whisking events in which (1) the whisk was part of a 0.5 s or longer

bout; (2) the amplitude of each whisk exceeded 7.5�, thus ensuring that chat-

tering and twitchingwere not included (Harvey et al., 2001), (3) the frequency of

whisk cycles was between 4 and 20 Hz; and (4) in records based on EMG, the

protractor and retractor muscles did not coactivate in phase, as occurs during

twitching and chattering (Berg and Kleinfeld, 2003a).

Voltage signals from the cortical and EMG microwire electrodes were

impedance buffered, amplified, band-pass filtered from 1 Hz to 10 kHz and

sampled at 36 kHz (Ganguly and Kleinfeld, 2004). The cortical recordings

were band-pass filtered between 600 Hz and 6 kHz (6 pole Butterworth filter

run in forward and reverse directions) to isolate the spectral power of extra-

cellular spike waveforms (Fee et al., 1996b). The voltage difference between

the two EMG signals from each implanted muscle was calculated numeri-

cally, band-pass filtered between 400 Hz and 3 kHz (4 pole Butterworth filter

run in forward and reverse directions), rectified, low-pass filtered at 250 Hz,

and down-sampled to 1 kHz to form the differential rectified EMG signal

(jVEMGj).
Cortical recordings were analyzed with an offline non-Gaussian cluster anal-

ysis algorithm to obtain single unit spike trains (Fee et al., 1996a). Putative

single units were accepted for analysis if the number of spikes that violated

an imposed absolute refractory period of 2.5 ms was consistent with less

than 10% level of contamination by unresolved units with Poisson spike rates.

Further, the waveforms of the putative single units were visually inspected for

separation from background noise and other waveform clusters obtained in

the same recordings. We estimated false-negative and false-positive errors

(Hill et al., 2011) and found that 75% of our putative single unit clusters had

a false-negative contamination of less than 10%, while 90% contained less

than 20% contamination. In addition, that 88% of our putative single unit clus-

ters had a false-positive contamination of less than 10%, while 95% contained

less than 20% contamination. The relatively small false-positive rate supports

the claim that the same single units can code multiple stimulus dimensions

(Figures 4, 5, and 7). These particular quality metrics could not be applied to

the reevaluation of the data set from vS1 cortex (Figure S5).
Basic Analysis

Correlation Analysis Based on Singular Value Decomposition

The correlation between a set of signals may be defined through the singular

value decomposition (Golub and Kahan, 1965), a standard matrix factorization

procedure that has previously been applied to determine correlations within

space-time data (Prechtl et al., 1997). For the case of whisking motion across

multiple vibrissae, we define the matrix Q(x,t), where x labels the individual

vibrissa and t is discrete time. This matrix can be factored as

Qðx;tÞ=
XN
n=1

ln X
T
nðxÞ TnðtÞ (3)

where Xn(x) is the n-th spatial mode and the superscript T refers to transpose,

a vector whose length equals the number of vibrissae in the data set, and Tn(t)

is the n-th temporal mode, a vector whose length is the number of time points.

The rank N is the smaller of the two lengths, typically the number of vibrissae in

the image. Finally, the expansion coefficients ln determine the energy in each

mode. When the individual waveforms that constitute the rows of Q(x,t) are

correlated, one or a few terms in the expansion may account for the majority
of the variance across all waveforms. A measure of correlation across all

waveforms is found by solving for the ln and computing the correlation

coefficient

Ch
l21PN

n=1

l2n

: (4)

The expansion of the original data in terms of just a single mode is given by

Q̂ðx;tÞ=
Z

All time

dt T1ðtÞQðx;tÞ: (5)

Linear Decoding by Single Units

The linear transfer function (Wiener, 1949) is used to predict vibrissa motion

from the spike trains of single neurons (Fee et al., 1997). Let ~S
j

kðfÞ denote

the Fourier transform of the kth measured unit’s spike train on the jth trial at

frequency f and let ~q
j

kðfÞ denote the Fourier transform of the corresponding

vibrissa position data. The transfer function, ~HkðfÞ, is

~HkðfÞ=

�
~S

j

kðfÞ ~q
j

k
ðfÞ�

�
D���~S j

kðfÞ
���2E : (6)

where an asterisk indicates the complex conjugate and the angular brackets

denote an average over trials and tapers. Multitaper estimates of ~HkðfÞ were

calculated using the Chronux toolbox (http://www.chronux.org) (Percival and

Walden, 1993).

The trials used to calculate the transfer function were 10 s epochs that

included both whisking and nonwhisking periods and comprised all behavioral

data for that unit except for one trial. The transfer function was applied to the

data from this excluded trial to calculate the predicted Fourier transform of the

motion, ~qkðfÞ, as

~q
i

kðfÞ= ~HkðfÞ ~Si

kðfÞ (7)

where i is the index of the trial that was left out. This function was then inverse

Fourier transformed to form the predicted vibrissa trajectory, bq i

kðtÞ.
Fidelity of the Relation between Spiking and Whisking

To quantify the covariation of the output of a single neuron with the motion of

the vibrissae, we calculated the coherence between its spike train and the

concurrent angular motion of the vibrissae. The coherence, denoted C(f),

between vibrissa motion and the spike train is given by

CðfÞ=

�
~S
j

kðfÞ~q
j

k ðfÞ�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����~Sj

kðfÞ
���2�����~qjkðfÞ���2�

s : (8)

where multitaper estimates of C(f) were calculated using the Chronux toolbox.

The corresponding signal-to-noise ratio, SNR(f), is given by

SNRðfÞ= jCðfÞj2
1� jCðfÞj2: (9)

Decomposition of Vibrissae Motion

Vibrissa motion was parameterized into separate amplitude, qamp(t), midpoint,

qmid(t), and phase, f(t), signals through use of the Hilbert transform (Figure 3A).

Whisking epochs of at least 500 ms were isolated and the motion signal was

band-pass filtered between 4 and 25Hz (4 pole Butterworth filter run in forward

and reverse directions). The Fourier transform was computed, the power at

negative frequencies was set to zero, and a complex-valued time series was

generated via the inverse Fourier transform (Black, 1953). The angle of this

signal in polar coordinates was taken as the phase of thewhisking cycle, where

f(t) = 0 corresponds to the end of protraction and f(t) = ± p corresponds to the

end of retraction. The time points of maximum retraction and protraction were

used to calculate qamp(t), defined as the range of angular motion over a single

cycle, and qmid(t), defined as the center angle that is swept out during a single

whisk. Amplitude and midpoint were linearly interpolated for phase values

between 0 and ± p.
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In behavioral sessions where the jVEMGj was measured from the papillary

muscles, the Hilbert transform was applied to the jVEMGj to calculate the

phase of whisking. The estimate of phase from the jVEMGj was found to

have an advance of 1.0 ± 0.7 radians (mean ± SD) compared with the phase

measured from videography; that corresponds to the delay between muscle

activation and movement. Thus, estimates of phase based solely on EMG

data, used for comparisons for literature reports of vibrissa movement, were

corrected with an imposed phase lag of 1.0 radians.

Normalization and Significance of Whisking Parameters

The modulation of the firing rate of a unit as a function of qamp, qmid, and f was

determined from all whisking epochs over the entire behavioral session. The

distributionof spikeevents for eachwhiskingparameterwasbinned intopercen-

tiles that represented2%of thedata, so that the total numberof binswasM=50,

and a histogram was calculated of the number of spikes in each bin. This histo-

gramwasnormalizedby the total amountof timespent in eachbin to yield values

in terms of firing rate. These response histogramswere smoothed and the 95%

confidence interval was calculated using the Poisson-distributed Bayesian

adaptive regression splines algorithm (DiMatteo et al., 2001). The significance

of firing rate modulation was determined by comparing the distribution of the

parameter at all times to its distribution at spike times. In the case of phase,

which is a circular random variable, we applied a 2-sample Kuiper test. For all

other parameters, we used a 2-sample Kolmogorov-Smirnov test.

Neural Encoding by Populations of Units

Slow Variables

We focus first on the case of population coding of the amplitude, qamp, and the

reliability of its estimation (Figure S8). In our model, an ideal observer counts

spikes for a fixed period T. The mean count for the k-th neuron is thus

lk(qamp)T, where the modulation of the spike rate is found experimentally (Fig-

ure 4). We make the assumption, the first of three, that the probability of

observing Nk spikes for a specific value of the amplitude, denoted qamp;m, is

a Poisson process, i.e.,

pðNk

��qamp;mÞ =
½lkðqamp;mÞT�Nk e�½lkðqamp;mÞT�

Nk !
(10)

where we discretized the range of possible amplitudes onto M bins labeled by

the index m, with M = 50, so that qamp;m corresponds to the mean value of qamp

for the mth bin.

As we have largely recorded neurons in separate sessions, we treat them as

independent encoders. Bayes’ rule then allows us to invert the relation

between spike count andwhisking parameter to estimate the probability of ob-

taining a specific value of the parameter as a function of the observed spike

count. Thus,

pðqamp;m

��NkÞ =
pðNk

��qamp;mÞ pðqamp;mÞ
pðNkÞ (11)

where p(qamp;m) is the distribution of occurrences of each amplitude qamp;m

(Figure 3C) and

pðNkÞ=
XM
m= 1

pðNk

��qamp;mÞ pðqamp;mÞ (12)

where M is the number of bins. The joint probability for the estimate of the

amplitude across a population of K units, given the assumption of independent

neurons, is

pðqamp;m

��N1;.;NKÞ=
YK
k =1

pðqamp;m

��NkÞ (13)

From this distribution, we finally assume that the value of the parameter is

estimated using maximum a posteriori decoding (Dayan and Abbott, 2001):

bqamp;mðN1 = n1;.;NK = nKÞ= arg max
qamp;m

�
pðqamp;m

��N1 = n1;.;NK = nKÞ
�
: (14)

Given this decoding model for the amplitude (Equations 6–9), we now wish

to evaluate its predictive accuracy. As we are interested in the effects of

sampling from a limited number of neurons, we use a Monte Carlo resampling

process to compare the results from the model to the original amplitude. We
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draw a random number of spikes for each of the K neurons based on Poisson

statistics and a fixed value of qamp;m (Equation 10); this defines a set of K spike

counts, (n1,., nK) that are used to estimate the joint probability (Equation 13).

We then use Equation 14 to estimate bqamp;mðN1 = n1;.;NK =nKÞ. We repeat

the process of draws and estimation 1000 times to form a distribution of errors

dqamp;m (K), where

dqamp;mðKÞ=
DD���bqamp;m

�
N1 = n1;.;NK = nK

	� qamp;m

���EE (15)

where I.J means averaging over draws.

The mean of this distribution approaches zero and the root-mean-square

width defines the accuracy with which the amplitude can be reconstructed.

The entire procedure is repeated as a function of K for each value of qamp;m.

Finally, we report the expected value of the accuracy as a weighted average

over all amplitudes, denoted dqamp(K), where

dqampðKÞ=
XM
m=1

pðqamp;mÞdqamp;mðKÞ: (16)

An analogous set of procedures holds for the accuracy of predicting the

midpoint, denoted dqmid(K). All units were represented in each simulation

unless otherwise specified. For simulations of populations that were larger

than the number of experimentally recorded cells, every unit was duplicated

into an equal number of copies so that each unit was equally represented.

A final issue concerns implementation. The range of amplitudes as well as

the range of midpoints are not equal for different animals. Thus, for purposes

of calculation, we normalized our responses in terms of percentiles of the

range of motion (Figure 3C) so that units from different animals could be aver-

aged together. Thus, we first transform from qamp (or qmid) to percentile, noting

that the percentile steps are uniform so the transformed prior probabilities

p(qamp) and p(qmid) have value 1/M = 0.02, then we complete the resampling

procedure in terms of percentiles, and finally transform back to absolute

angles to determine dqamp(K) and dqmid(K).

Prediction of the Rapidly Varying Phase

Here we calculated the transfer function to characterize the ability of a single

unit to predict only the phase of the whisk cycle (Equation 1) (Figure S9). We

compared the corresponding measured phase, f jðtÞ, to the phase predicted

by the unit, xk
jðtÞ, to form the probability distribution of error pðx k jfÞ. In all

calculations, values of phasewere discretized onto 20 equally spaced intervals

between 0 and 2p.

In each simulation, a target value for the phase, f = fm where m defines the

phase interval, was chosen and an estimate of the phase, xk, was drawn at

random for each simulated unit from its probability distribution pðx k jf=fmÞ,
where k = 1, ., K. These single unit estimates were pooled into a posterior

distribution under the assumption of statistical independence,

pðfjx1;.; xKÞ=
YK
k =1

pðfjxkÞ=
YK
k = 1

pðxk jfÞpðfÞP
f

pðxk jfÞpðfÞ
(17)

where we applied Bayes’ rule for the second step. At this point the calculation

proceeds with steps analogous to those for the slow variables to determine the

accuracy of predicting phase, denoted df(K).
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