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CHAPTER 7

Associative Network Models for Central
Pattern Generators

DAVID KLEINFELD and ITAIM SOMPOLINSKY

7.1 Introduction

The collective properties of highly interconnected networks of model neu-
rons have been the focus of much theoretical analysis. Recent work on
this topic involves networks whose dynamics are governed by a cooper-
ative relaxation process (e.g., Hopfield 1982, 1984; Peretto 1984; Amit,
Gutfreund, and Sompolinsky 1985a, 1985b; Gardner 1988). Starting
from an initial state, these networks will relax to one of a select num-
ber of stable states. The stable states are local minima of a suitable
“energy” function. Network models of this form have been used for as-
sociative memory (Hopfield 1982) and for solving certain optimization
problems (Hopfield and Tank 1986). The final, stable states represent
the retrieved information or the optimized configuration.

Despite some very suggestive analogies between the network mod-
els and biological computational processes, their application in biology
is unclear. The difficulty in relating the models to experimental ob-
servations reflects, in part, the difficulty in identifying a cooperative
relaxational process in large, complex nervous systems. Similarities be-
tween associative memory networks and central nervous functions, such
as place learning in the hippocampus (e.g., O’Keefe 1983), olfaction
(Gelperin, Hopfield, and Tank 1985; Haberly 1985; Baird 1986) and vi-
sual processing (Koch, Marroquin, and Yuille 1986; Wang, Mathur, and
Koch 1989) have been proposed. Yet the models remain untested at the
level of neurophysiology.

In this chapter we study an associative network model whose collec-
tive outputs consist of temporally coherent patterns of linear or cyclic se-
quences of states (Sompolinsky and Kanter 1986; Kleinfeld 1986;
Kleinfeld and Sompolinsky 1988). This model and its extensions may
have a variety of implications for the learning and recall of temporally
ordered information. Our objective in the present work is to draw a
connection between the properties of the model and biological nervous
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systems that produce fixed patterns of neural outputs. In particular, we
focus on a class of biological systems known as central pattern genera-
tors.

Central pattern generators (CPGs) control the muscles involved in
executing well-defined rhythmic behaviors, such as breathing, chewing,
walking, swimming, and scratching. Some networks forming CPGs are
anatomically well localized and may contain small numbers of neurons.
Their output consists of coherent, oscillatory patterns. These features
make CPGs strong candidates for studying the relation between the
collective output properties of a biological network and its underlying
circuitry.

A number of basic principles about CPGs have emerged from studies
on a wide variety of rhythmic behaviors (for review, see Delcomyn 1980;
Kristan 1980; Roberts and Roberts 1983; Cohen, Rossignol, and Grillner
1986; Selverston and Moulins 1986):

1. A rhythmic neural output can occur in the absence of sensory
feedback from the muscles and structures controlled by the CPG,
and in the absence of control by higher neural centers. These
features are clearly demonstrated with “spinal” preparations (e.g.,
Grillner 1975), i.e., isolated segments of spinal cord. The output
activity of the motor neurons in these preparations is similar to
the rhythmic firing pattern observed in the intact animal.

2. Some CPGs function without a pacemaker cell, i.e., a single neuron
whose firing rate determines the output period of the network.
This implies that the rhythmic output is a collective property of
the network. Examples include the CPG that controls swimming
i the molluse Tritonia diomedea (Getting 1981, and chapter 6)
and possibly the CPGs that control flight in the locust (Wilson
1961; Robertson and Pearson 1985) and swimming in the leech
(Stent, Kristan, Friesen, Ort, Poon, and Calabrese 1978; Wecks
1981).

3. The same set of motor neurons can be involved in a variety of
rhythmic behaviors in an animal. This suggests that a CPG may
be capable of producing multiple patterns of rhythmic outputs.
Further, animals can rapidly switch between rhythmic behaviors
and may blend different rhythms together (e.g., Stein, Camp,
Robertson, and Mortin 1986).

4. The output of the CPG can be modulated by external inputs, such
as feedback from proprioceptors and from higher neural centers.
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For example, modulation is used both to turn on and off the CPG
and to control the period of its rhythm.

The dynamic properties of several CPGs have been analyzed by per-
forming detailed simulations of specific circuits. Simulation techniques
have been used in the study of the lobster pyloric and gastric mill
rhythms (Perkel 1965; Hartline 1979) and the swim rhythm in Tritonia
(Getting 1983a, and chapter 6). This approach often involves simulating
the equations that describe the dynamics of the neurons in the CPG,
e.g., Hodgkin and Huxley-like equations (Hodgkin and Huxley 1952), us-
ing the known biophysical parameters for each neuron and the synaptic
connections between neurons. Detailed simulations have been useful for
determining the completeness of a set of measurements of a CPG (e.g.,
Getting 1983a, 1983b). A complementary approach for understanding
the biological mechanisms responsible for pattern formation is to com-
pare the properties of CPGs with those of simple network models (for a
discussion of this approach, see Selverston 1980).

The smallest circuit that can produce a rhythmic output consists
of two neurons coupled by reciprocal inhibitory synaptic connections
(Harmon 1964; Reiss 1964). If both neurons are tonically excited and
contain a mechanism for synaptic fatigue, they will alternately produce a
bursting output. The period of the output oscillation is proportional to
the time scale of the fatigue. The two-neuron oscillator and networks of
coupled two-neuron oscillators provided an early basis for understanding
some aspects of the motor system controlling flight in the locust (Wilson
and Waldron 1968).

A generalization of the two-neuron oscillator was made by Kling and
Szekély (1968). They studied networks containing closed loops of neu-
rons connected by inhibitory synapses. This topology results in recur-
rent, cyclic inhibitory pathways that allow the networks to produce a
rich set of oscillatory patterns. These networks have been used, although
with limited success, as a basis for understanding the CPG controlling
the swim rhythm in the leech (Friesen and Stent 1977).

The mechanism of recurrent cyclic inhibition can be extended to ar-
bitrarily large networks. However, certain features of these networks
make them inappropriate as general models of CPGs. All of the synap-
tic connections in a loop are inhibitory; this precludes the use of loops
for modeling CPGs that also contain excitatory synapses. The loops
rely on a specific cyclic topology of their connections in order to func-
tion. Finally, simulations liave indicated that each loop is capable of
producing only a single stable output pattern (Kling and Szekély 1968).
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Several other network models have been studied as candidates for CPGs
(Harth, Lewis, and Csermely 1975; Glass and Young 1979; Thompson
1982; Kopell 1986). A mechanism for the generation of multiple, coher-
ent patterns by highly interconnected networks is, however, lacking in
these models.

In this chapter we present a general model for producing rhythmic
patterns in associative neural network models. The network consists of
highly interconnected model neurons whose essential feature is a non-
linear relation between their inputs and their firing rate. The form of
the output patterns is encoded in the strength of the synaptic connec-
tions between pairs of neurons. Rhythmic output emerges as a collective
property of the network.

Many of the structural and dynamic properties of our mode} are sim-
ilar to those observed in CPGs. The network can produce rhythmic
output in the absence of external feedback. It can naturally produce
multiple stable patterns of rhythmic outputs. Well-defined mechanisms
exist for modulating the output period of the patterns and for switching
between individual patterns. Both excitatory and inhibitory synapses
are typically present. Thus the model may serve as a formal frame-
work for understanding some biological systems that produce rhythmic
output.

We compare the predictions of our model with Getting’s detailed mea-
surements on the CPG controlling the swim rhythm in Tritonia (Getting
1981, 1983a, 1983b; chapter 6). This CPG contains a small number of
neurons and produces a single rhythmic output pattern. Yet the com-
parison will serve to highlight many features of the model and to assess
its applicability to biological systems.

7.2 The Model

The present model is an extension of Hopfield’s model of associative
memory (Hopfield 1982, 1984). We consider a network that contains N
interconnected model neurons. The output of each neuron, Vi(t), varies
between zero (quiescent) and unity (maximum firing rate). The state of
the network is specified by the output activity of all of its neurons. It is
represented by V(t) = {Vi(t)}}¥,.

A pattern is defined as a temporal sequence of a subset of all possible
output states. The states, V# = {V#}V | comprising this subset are
referred to as the embedded states. For example, a pattern of length »
consists of the sequence
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where each state V# is an embedded state. For the case of a cyclic
sequence, of relevance for modeling CPGs, V" = Vi, The networks can
produce multiple patterns; we define V#* as the uth embedded state in
the vth pattern.

We consider patterns in which the output activity of the model neu-
rons alternates between a relatively low firing rate and a relatively high
rate. The precise form of this activity depends upon the detailed char-
acteristics of the neurons. We therefore assume for simplicity that the
output of each neuron, while the network is in an embedded state, alter-
nates between quiescence and its maximum firing rate. Each component
VY of the embedded states is thus given by either 0 or +1. This as-
sumption allows us to focus on properties of the networks that result
specifically from the form of the connections between neurons.

In the remainder of this chapter we first define the rules for encoding
the output patterns in the synaptic connections. Next we describe the
dynamics of the network, followed by a description of its general prop-
erties. Some of these properties are illustrated by numerical examples.

7.2.1 Synaptic Connections and Their Response Time

The desired output patterns are encoded in the form of the synaptic con-
nections between the model neurons. We define the synaptic connection
between the jth presynaptic neuron and the ith postsynaptic neuron
as Ti;. A central feature of the present model is that each connection
T;; is functionally separated into two components, denoted T;j and Tf;
The two components are hypothesized to have different characteristic
response times. The synaptic connections T[j act on the shorter of the
two time scales. This time scale, Tg, delermines the time required for
the network to settle in each of the embedded states. The synaptic con-
nections denoted T£ act on the longer of the two times. This time scale,
r.(T 3> 75), sets the time for the onset of the transitions between con-
secutive states in the pattern. Thus the duration of an individual state
in a pattern will be ~ 7, while the transitions between states occur on

the faster time scale of 7s.

The role of the connection strengths Tg is to stabilize the network in
an embedded state, until a transition to the next state occurs. This is
achieved by defining the 7Tj; in terms of a formal version of the Hebb

(1949) learning rule (see also Hopfield 1982), i.e.,
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where ¢ is the total number of patterns, » = r(v) is the length of the vth
pattern, and 7;] = 0. The prefactor Jo/N ensures that the magnitude
of the total synaptic input is of order Jo. The variable (2V/"” —1) has a
value of either —1 (quiescent) or +1 (maximally firing) so that inhibitory
as well as excitatory synapses are formed.

The role of the connection strengths Tf;' is to induce transitions from
the pth embedded state to the u+1th state. Thus we define

2| &
N
7

T = A @V D@V —1),  i#G, A>0  (1.2)

where A is a scaling parameter for the transition strength and T0% = 0.
We will discuss the constraints on A in a later section. For the case of
cyclic patterns, V™¥ = V1. Note that the T,I]“ synapses, which depend
on the consecutive output activity of the neurons, are asymmetric (Té‘ #
T]L,), while the Tg synapses, which depend only on the activity within
the individual states, are symmetric.

The rule for forming the Tz? synapses (eq. 7.2) encodes transitions
between pairs of embedded states. This allows the network to generate
patterns that involve unambiguous transitions between states. The per-
missible patterns correspond either to linear sequences (fig. 7.1A), cyclic
sequences (fig. 7.1B) or sequences down a tree structure (fig. 7.1C). Sev-
eral different patterns, as well as isolated, stable states, can be embedded
in the same network. Patterns that involve ambiguous transitions, such
as when two patterns share the same embedded state, cannot be reliably
produced by the present network. This includes patterns that involve
transitions up a tree. We will return to this issue in section 7.4.

The rules defined by egs. 7.1 and 7.2 for forming the synaptic com-

ponents are applicable only when the overlaps between the embedded
states are small, 1.e.,

N

1 ’ 1

7 E @V 1)@V —1)~0 for (u,v) # (1, 0) (7.3)
ji=1

and when, on average, half of the neurons are active in each of the
embedded states, i.e.,

~

1

7 > @V 1) ~0 (7.4)
i=1
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Figure 7.1

State diagrams of the different topologies of patterns that can be produced by the
model network. Circles correspond to stable outputs, i.e., embedded states, and
arrows correspond to the transitions between these states. (A) A linear sequence of
embedded states. The network will remain in the final state, V%, after completing
the sequence. (B) Cyclic sequences of embedded states. Two cyclic patterns, along
with an isolated stable state, V1)1, are shown. This arrangement of patterns was
used in the simulation shown in fig. 7.6. (C) A tree structure, in which two or more
sequences ultimately share the same set of embedded states.
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These relations will be satisfied if the embedded states are approximately
orthogonal to each other. For a large network, eqs. 7.3 and 7.4 are
satisfied if the embedded states are chosen from a random sample; the
average overlap in this case is ~ y/1/N. Alternative rules, appropriate
for embedding states that have a high degree of overlap, are described
in Appendix 7.A.

Synaptic Inputs The integrated synaptic input to each model neuron
is assumed to be a Lnear summation of the outputs of the presynaptic
neurons. The total synaptic input to the ith neuron via the fast compo-
nents of the synapses , h?(t), is

N
HOED A0 (7.5)
j=1

The total synaptic input via the slow components, RE(1), is

z

hE() =) TEV () (7.6)

where V(1) is the time-averaged output of the neuron, i.e.,

Vi(t) = /Ooo Vi(t — t')w(t')dt’ (7.7)

The synaptic response function w(t) for the slow, T,-‘;f, components is a
non-negative function that is normalized to unity, i.e.,

/muomzl (7.8)

and characterized by a mean time constant TL, le.,

/wmmazn. (7.9)
0

The inputs h¥(t) correspond to a weighted average over the histories
of the neural activities, with a characteristic averagmg time of 77, An
example of the time course of a postsynaptic response to a short presy-
naptic stimulus is illustrated in fig. 7.2.
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Figure 7.2

Tllustration of a two-component synaptic connection from the jth to the ith neuron.
The components are resolved following a short pulse (At € 7g) of activity in the
presynaptic neuron. The area (shaded region) under the fast synaptic response is
equal to Tf; (eq. 7.1); in this example Tg is taken to be excitatory. The area (shaded
region) under the slow synaptic response is equal to TfJ‘, in this example Tf‘] is taken
to be inhibitory. The ratio of these areas, averaged over all pairs of synapses, equals
the transition strength ) (eqs. 7.2 and 7.10). The time course of the slow synaptic
response corresponds to the response function w(t) (eq. 7.6); it has a time constant
of 17,.
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7.2.2 Network Dynamics

Before we define the detailed dynamics of the network, we present a
qualitative description in terms of the time dependence of the neural
inputs. For simplicity of notation we consider a network that produces a
single pattern. Immediately after a transition from the p—1th embedded
state to the uth state, the output of the network is V(t) = V#, and the

time-averaged output is V' (¢) ~ V#~1. The inputs via the fast synaptic
components are (eq. 7.5)

N
B = ) TV
ji=1

Jo < 1 &
= 7;(w,."-l) ﬁ;(zvjﬂ_n(zv;‘—n

;&
+ 5 2@ -1
j=1
Jo

- 2V -1)

1R

where we used eqs. 7.1-7.4. The synaptic input hj(¢) is negative, i.e.,
inhibitory, if V}” = 0 (quiescent) and is positive, i.e., excitatory, if Vy=1
(maximally firing). The inputs via the slow synaptic components are
(eqs. 7.6 and 7.7)

N
W) =3 TRV AR v 1)
j=1

Thus both A°(t) and hL(t) tend to stabilize the network in its current
state. With increasing time, V_(tj gradually shifts away from V#-! and
toward the current state V#. This shift generates an increasingly large
component of hi(t) that is conjugate to V#+1. After the network has
remained in the state V# for an interval ~ 7, the inputs become

N
Jo gpn
B =3 TEV) = (V) —1)
j=1

and
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N
Jo
RE) = THVY =A@Vt -1)
j=1

The new values of hX(¢) tend to drive the network toward the state

7u+1 For sufficiently large values of A (A & 1) the network makes a
rapid transition to the p+1th embedded state.

A persistent sequential output pattern does not emerge if the TS and
T£ synaptic components act on the same time scale (i.e., 7 =~ 77).
The transitions occur too frequently to allow the network to settle in
an embedded state, resulting in an irregular output pattern that quickly
dephases.

Detailed Dynamics The dynamic evolution of the network is de-
scribed by the equations

s 880 L)

T R (1) + B (1) + Losim,

N
S (T5V;0) + TEVD) + Lotim, (7.10)
i=1

where u;(t) is the net input to the ith neuron and Is4m, represents
an external input to the ith neuron. The equivalent electrical circuit
described by these equations is shown schematically in fig. 7.3.

The output of a model neuron, V;(?), is related to its net input, u;(t),
by a nonlinear gain function

Vi(t) = glu(t) - 6] (7.11)

where 0; is defined as the mean operating level of the neuron.! The
dynamic features of the network do not depend on the details of the
gain function;? fig. 7.4 illustrates an appropriate form (e.g., Fuortes and
Mantegazzini 1962). Note that the output of a neuron is most sensitive
to changes in its input when u;(t) ~ 6;.

1This definition is more precise than the usual description in the literature on
associative neural network models, in which 8; is equated with the threshold level
of a neuron. The later designation, however, is in discord with the neurobiological
definition of the threshold level as the minimum input required to elicit a non-zero
firing rate. The two definitions are equal only for neurons operating in the high-gain
limit (see eq. 7.14).

2More generally, we require only that the postsynaptic response of a neuron is
nonlinear. This can occur even if the firing frequency of the presynaptic neuren is a
linear function of its input cwrent.
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Figure 7.3

Schematic representation of the circuit diagram for the model network. Neurons
are represcnted by saturating amplifiers (triangles; eq. 7.11) with a charging time
of ¥N = RC, where R represents the net input resistance of the neuron. Synaptic
connections between each pair of neurons are represented by conductances (—\—)
proportional to Tg (fast synaptic components; eq. 7.1) or TiI; (slow synaptic compo-
nents; eq. 7.2). The response function of the slow synapses, w(t) (circles; egs. 7.7 to
7.9) has a characteristic time constant of 71. The fast response time of the network,
75, corresponds to the larger of 7V or the time constant of the fast synapses. The
detailed dynamics of the network are described by eq. 7.10.
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Figure 7.4

Schematic representation of a saturating gain function for a neuron. This function
relates the output, or firing frequency of a neuron, V;(¢), to the value of the net input,
u;(t), and the mean operating level, 8; (eq. 7.11). The output of a neuron is most
sensitive to changes in its inputs when u;(t) ~ 6; (eqs. 7.12 and 7.13).




208 Chapter 7

The temporal relation between the fast and slow synaptic inputs, h7(t)
and h¥(t), respectively, the total input to the neuron, u;(t), and the out-
put of the neuron, V;(t), areillustrated later in fig. 7.6B. The calculations
leading to this figure are described later.

The biological interpretation of the short time constant (75) in eq. 7.10
depends on the relative values of the response time, 79, of the fast
synapses compared with the charging time, 7V, of the neurons. In gen-
eral, 75 should be identified with the longest of the two time constants
7V and 75. The emergence of patterns in our networks relies only on
the time separation of 75 and 7y, i.e., 7s < 7p. In practice, a separation
of time scales by a factor of approximately four or more is sufficient.

Output Period In the present model the time spent by the network
in each embedded state is constant. This time is ¢y ~ 7z, while the time
spent making the transition between two states is ~ 75. Thus the period
of a cyclic pattern comprised of r states will be ~ » - 15. The time #; is
a monotonically decreasing function of the transition strength A. The
precise value of t3 depends on the value of A, on the detailed form of
the synaptic response function, w(t), and on the length of the pattern.
Expressions for 1, valid for the special case of a very long sequence and

for the case of biphasic oscillations, are given in Appendixes 7.B and
7.C.

Neuron Operating Levels In order that the patterns embedded in
the T,f and the ng‘ synapses emerge as stable outputs of the network,
the mean operating value of each neuron must be adjusted so that its
output is maximally sensitive to changes in its input. This implies that
the difference between the mean operating level of a neuron and the net
input to that neuron, averaged over all its possible values, is small. This
difference is denoted by A8;, where

1
AG; = 0; — ) [h?(vj(t)max) + his(vj(t)min)
+ hE(V; (D) maz) + hEV; (@ min)] = Losim, (1) (7.12)
N
1
= Hz—- 52(115""‘71? _Istimi(t)
j=1

We require that
Ab; ~0 (7.13)

More precisely, Af; must be small compared to the typical value of the
synaptic inputs present while the network is producing a pattern, i.e.,
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Af; €« Jg. A similar constraint holds for other associative networks
(Little 1974; Hopfield 1982; Bruce, Gardner, and Wallace 1986).

High-Gain Limit The analysis of the dynamic properties of the net-
work is simplified in the limiting case of a network containing two-state
model neurons (McCulloch and Pitts 1943). These neurons are either
quiescent or fully active, ie., Vi(t) = 0, +1 (fig. 7.4). In this limit
the analog circuit equations (egs. 7.10 and 7.11) are replaced by the
difference equations, or update rules,

Vi(t + 6t) stp [R7 (2) + hE(@) - 6] (7.14)

N
st | 557 (75 @230 - 1)+ T @V - D)
j=1

where the step function, sip(x), is defined by
stp(e) =

+1; z>0
0; =<0

In eq. 7.14 we assumed A#; = 0 with Istim, = 0 (eq. 7.13).

The update rules (eq. 7.14) can be implemented either synchronously
or asynchronously. In synchronous updating the output of every neuron
is changed simultaneously; in this case 6t = 7. In asynchronous updat-
ing a neuron is selected at random and its output is updated. In this
case 15 should be identified with the mean update time of the entire net-
work and 6t = 75/N. Asynchronous updating more closely resembles
the dynamic behavior of the analog network (eqs. 7.10 and 7.11) and
may also provide a more realistic representation of biological systems.

The effect of stochastic noise can be incorporated into the model by
replacing the deterministic update rules (eq. 7.14) with probabilistic
update rules. A useful example of such rules is given by

1
1+ exp[—28(hf (1) + hi (1) — 6:)]

where P(V; = 1) is the probability that the ith neuron is firing (Little
1974). The parameter 1/3 plays the role of temperature. It is a measure
of the level of stochastic noise in the network; e.g., noise caused by rapid
fluctuations in the strength of the synapses (e.g., Dionne 1984). In the
limit 3 — oo we recover eq. 7.14.

PlVi(t+75) =1] = (7.15)
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7.2.3 Adiabatically Varying Energy Function

It has been useful to describe the properties of some associative neural
networks in terms of an energy function (Hopfield 1982, 1984; Cohen and
Grossherg 1983; Amit et al. 1985a). Strictly speaking, such a function
does not exist in our network. The stable outputs do not correspond
to states that are local minima of an energy function. Nevertheless,
we can describe the dynamics of our model in terms of a relaxational
process to a local minimum of an adiabatically varying energy function.
The parameters of this function depend on the history of the network.
The relaxation process occurs on the fast time scale of 75, while the
underlying energy landscape changes on the slower time scale of 7. An
appropriate energy function for our network is:

1 N N
E = -3 (2V; - 1) T5 (2v; — 1)
i=1 j=1
N N
> @vi—1) | 20f(t) - > T (7.16)
i=1 ji=1

In writing eq. 7.16 we assumed for simplicity that the outputs of the
neurons are close to saturation; this corresponds to the high-gain limit
(eq. 7.14). The first term in eq. 7.16 is identical to the energy function
of the Hopfield’s associative network (Hopfield 1982). The embedded
states, V¥, are robust minima of this term. The second term in the
energy (eq. 7.16) is a field term that varies with the slow time dependence
of hL(t) (eqs. 7.6-7.9).

The time dependence of the energy landscape is illustrated by the
surfaces shown in fig. 7.5. Each cross-point on a surface corresponds
to a state of the network. The minima in the surface correspond to the
embedded states V# and V#*1 The “distance” between two cross-points
is equal to the number of neurons whose output is different between the
two corresponding states. The path between the states V# and V#+1
passes through a set of unstable, intermediate states that are present
only during a transition.

After the network has settled into the puth embedded state the field
term, h1(¢), initially acts to stabilize the network in this state (fig. 7.5A).
As the value of hL(t) evolves, the energy minimum at the current state
in the pattern weakens while that at the next state, V#*1, grows deeper
(fig. 7.5B). Eventually the minimum at V# disappears and the network
makes a rapid transition to the state V#+1! (fig. 7.5C).
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Figure 7.5

The time dependence of the adiabatic energy function for a network operating in
the high-gain limit (eq. 7.16). A network containing 64 neurons was constructed to
produce a cyclic pattern among seven (orthogonal) embedded states (egs. 7.1, 7.2,
7.7, 7.12 with A8; = 0, and 7.14). The slow synaptic response was w(t) = 1/7z for
T1,/2 < t < 37./2 and w(t) = 0, otherwise with 77, = 2075 and A = 2. To form the
energy surface we defined a plane in the output space of the network in terms of a
path that runs along the output sequence, ie., --- — ve—l , ye o, yetl L
and a path that runs approximately orthogonal to this sequence. Each of the cross-
points on this plane corresponds to a possible output state of the network. (A) The
energy values after the network has made a transition to the uth state. The delayed
output corresponds to V(t) = V#71. The field term in the energy (eq. 7.16) has
deepened the minimum at the pth embedded state at the expense of the minimum
at the u—1th state (not shown) and the p+1th state. (B) The energy values after the
delayed output has changed to V(t) &~ 0.5V #~1 4+ 0.5V#, The field term contributes
equally to the minima at the gth and the p+1th embedded states. (C) The energy
values after the field term has completely removed the minimum at the pth embedded
state, causing the network to make a transition to the u+1th state. The time spent
in each state, g = 1.257L, is in accord with theory.
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The existence of an approximate energy function suggests that the
output patterns are robust against moderate levels of static and dy-
namic noise in the network. In the case of stochastic noise (see eq. 7.16),
the dynamics of the network are governed by an adiabatically varying
free-energy function with a “temperature,” 1/3, determined by the am-
plitude of the noise.

7.2.4 Numerical Simulations and Additional Properties of the
Model

A number of general features of the model were examined by numerical
simulations and analytical techniques. Simulations were performed using
egs. 7.7 and 7.10 and the gain function

1
1+ exp[—2G (u;(t) — 6;)]

where G is the gain constant. The form of the gain function was chosen
because of its similarity to the form of the stochastic update rules (cf.
egs. 7.15 and 7.17). Note, however, that the gain function is part of
an analog system of equations (eq. 7.10) that describes deterministic
dynamics.

Vi(t) = (7.17)

Example: A Network with Multiple Patterns To illustrate some
of the properties of the model we simulated a network consisting of 100
neurons with nine randomly selected embedded states. These states were
arranged as a single isolated state, a cyclic pattern among five states,
and a cyclic pattern among three states (fig. 7.1B). We chose a delayed,
uniform-averaging function for the slow synaptic response, i.e.,

wiy={ 7 TSI
0 otherwise
with 77 = 2075 and took A = 2 (eq. 7.2) and G~! = Jo/4 (eq. 7.17).
The connection strengths were formed according to egs. 7.1 and 7.2,
and the analog network equations (egs. 7.7, 7.10, and 7.17, and eq. 7.12
with A = 0) were approximated using finite difference methods (Ap-
pendix 7.D). We interpreted the values for the neuronal outputs, Vi(t),
as the probability that the ith neuron fired in the interval rg. These
probabilities were used to construct the firing patterns for each neuron.
Figure 7.6A shows the firing pattern obtained from the output of 8 of
the 100 neurons; the remainder of the neurons exhibited a similar firing
pattern. The network was initially in the isolated, stable state V11, At
time ¢; an external input I;y;m(?;), with duration At = 7, was applied
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to drive the network into state V1?2 of the (¥v=2)th pattern. At the
later time t2 a second external input I,;m(t2) was applied to drive the
network into a state in the (¢=3)th pattern. The appearance of stable
patterns after each input illustrates how the same network can produce
multiple output patterns.

Figure 7.6B illustrates the temporal relation between the synaptic
inputs to the (i=8)th neuron, h§(t) and hE(?), the net input ug(t), and
the output Vg(t); these values coincide with the output marked by the
box in fig. 7.6A. The peak values of h%(t) are approximately twice the
amplitude of the peak values of hg(t) because of the choice A = 2.

In the above simulation the output of each neuron is either quiescent
or firing near its maximum rate. This feature of the output behavior
results from the saturation characteristics of the gain function (eq. 7.17)
chosen for this example. Other choices for a gain function can lead to
stable output patterns in which the firing rate of the neurons does not
saturate in each of the embedded states.

Maximum Number of Embedded States A network can contain
several patterns. The total number of embedded states in these patterns,

p, is

r(v) (7.18)

q
p:
v=

(egs. 7.1 and 7.2). The value of p is limited to
p<a.N (7.19)

where the coefficient o, depends on the length and topology of the em-
bedded patterns, the transition strength A, and the form of the slow
synaptic response function w(¢). When w(t) is given by a simple time
delay, ie., w(t) = 6(t — 71), the value of the coefficient is a; ~ 0.3
(A = 1to 2). This value is larger than the value o, = 0.14 for Hopfield’s
associative memory (Amit et al. 1985b; Crisanti, Amit, and Gutfreund
1986; see also Gutfreund and Mézard 1988). When w(t) is represented
by a smoothly varying function of time, the value of the coefficient is
reduced to . L0.1.

The input to each neuron will contain a static noise term of order
/p/N when the number of embedded states is close to its maximum
value. This noise may enhance the transitions between the embedded
states. This enhancement, in turn, will reduce the minimum value of

the transition strength necessary to generate patterns to a value A 1.
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Figure 7.6

Simulation of a network containing 100 neurons with nine embedded states; see text
for details. The heavy lines at the top of the figure correspond to the output period
of each pattern. (A) The firing pattern calculated from the outputs V;(t) of 8 of
the 100 neurons. The network was initialized in state V1:2, At time t; an external
input Istim(t1) was applied for a time 77,. This input drove the network into state
V21 and thus initiated the (v=2)th pattern. Similarly, the external input Tetim(t2)
was applied at time t2 to drive the network into state V1:3 and initiate the (v=3)th
pattern. (B) Details of the dynamic behavior of the (i=8)th neuron for the period
of time delineated by the box in (A). Shown are the inputs from the fast synaptic
components, hss(t), the inputs from the slow synaptic components, hé‘(t), the net
synaptic input, ug(t), and the output of the neuron, Vs(t).
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Eliminating Synaptic Connections The model we described as-
sumes the existence of synaptic connections between all pairs of neurons.
Biological networks may contain a much smaller set of connections ei-
ther intrinsically or as a result of damage or disease. Will our network
function with a reduced set of connections?

The performance of the network model is only marginally affected
when up to 50% of the fast components of the synaptic connections (T,;;w
are eliminated at random. The main effect of eliminating a fraction,
¢%, of these components is to proportionately decrease the maximum
number of states that can be embedded in the network (see eq. 7.18).
Eliminating the slow components of the synaptic connections (7}%) has a
relatively small effect on this number (except for the case of w(t) ~ é(t—
71)). However, random elimination of a fraction, ¢k, of the Té’ synapses
will decrease the ability of the network to make a transition between
the embedded states. This decrease can be offset by a compensating
increase in the value of A. The effective transition strength, A*//| in this
case is

1—cL

xelf~ ) (7.20)

1-c5
The value of A*f/ must be greater than 1, implying that

> 1—c5
1—cL

Analog Versus Two-State Neurons The analog character of the
model neurons does not play a major role in our network, as it does not
in Hopfield’s network (Hopfield 1984). Patterns are reliably generated
when the gain of the neuron, G in eq. 7.17, is chosen to be larger than a
critical value, G,. The value of G7! is approximately equal to the value
of the typical net input to the neuron, i.e., G7! = Jy. Its precise value
depends on both the number of embedded states and on the topology
of the patterns. At moderate values of gain, G b G, the transitions
between the embedded states are enhanced. This reduces the minimum
value of the transition strength to A < 1, similar to the effect found
using two-state neurons with the stochastic update rules (eq. 7.15).

7.2.5 Biphasic Oscillations

A particularly simple pattern is one that oscillates between an embedded
state V# = {V#}]L| and its antiphase, (1 — V*#), in which the quiescent
neurons are now firing and vice versa. Multiple patterns of this form
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can be embedded in our network. The resulting synaptic strengths are
(egs. 7.1 and 7.2)

Jo & .
TS =% 2@V =DV -1, i#j J>0 (7.21)
p=1
and

i#j, A>1 (7.22)

g

T =232 3 20— V) - (V) 1) = AT,
p=1

where k is the number of patterns and 7} = T4 = 0.

Although the synaptic components ng are, in general, asymmetric
(i.e., TJI; # Tfj) they are symmetric for the special case of biphasic
oscillations (cf. egs. 7.2 and 7.21). The relation T,? = —-AT{? implies that
the connections between each pair of neurons correspond either to short-
term reciprocal inhibition followed by delayed excitation, or to short-
term reciprocal excitation followed by delayed inhibition. Note that even
in this case, the symmetry in both the Tg and the T,I]“ components may
be broken, e.g., by eliminating synaptic connections, without strongly
affecting the output behavior of the network.

In Appendix 7.C we derive an analytical expression (eq. 7.40) that
relates the duration of each state, tg, to the slow synaptic response time,
7L, the transition strength, A, and the form of the synaptic response
function, w(t). We use this expression to calculate the dependence of g
on A for a number of response functions (Table 7.3).

7.3 Central Pattern Generator in Tritonia

In this section we draw a connection between our model and detailed
measurements on the central pattern generator controlling the swim
rhythm in the mollusec Tritonia diomedea. A description of the swim
rhythm can be found in the previous chapter.

The CPG in Tritonia consists of four neural groups, denoted by VSI-
A, VSI-B, C2, and DSI. 3 The VSI neurons are the ventral swim in-

3There are three DSI neurons connected to each other by strong, fast-acting exci-
tatory connections. Following Getting (1981), we group all three as a single neuron.
The role of the DSI neurons as single neurons pertains to the turning on and off of the
cyclic response (Getting and Dekin 1985), a topic we do not consider in detail. The
fast, excitatory interaction among the DSI neurons may be incorporated by includ-
ing a nonzero self-coupling term, i.e., TQS;,, into the model. An analysis shows that
the inclusion of this term has a relatively minor effect on the output of the network

(Kleinfeld and Sompolinsky 1988).
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Figure 7.7

The output activity simultaneously measured from a C2, DSI, VSI-A, and VSI-B
neuron in an isolated brain preparation from Tritonia. These neurons comprise the
CPG that controls the escape swim sequence. Their output corresponds to V (%),
Va(t), Va(?), and Va(t), respectively, in the analysis presented in section 7.3. The
arrow indicates the initiation of the sequence. Note that in the present work we are
concerned only with the oscillatory behavior of the CPG, and not with the gradual
dephasing that leads to its turning off. Vertical bar: 50 mV for C2, DSI, and VSI-B
and 25 mV for VSI-A. Adapted from Getting (1983b).

terneurons, C2 is a cerebral neuron, and DSI represents the dorsal swim
interneurons. The observed output pattern consists of bursting output
from VSI-A and VSI-B neurons alternating with bursts from the C2 and
DSI neurons (figs. 7.7, 6.1A). The time interval between consecutive ac-
tion potentials within a bursting state is ~ 0.01 sec to 0.1 sec, and the
duration of each state is, on average, approximately 5 sec.

Of primary importance is Getting’s observation that some of the
synaptic connections have components that act on two different time
scales. For example, the synaptic input to C2 from DSI shows a rapid ex-
citatory response followed by a much slower inhibitory response (figs. 7.8,
6.5B). The observed form of the synaptic response in Trifonia suggests
that there is an analogy between the mechanism for oscillations in our
theory and the biological mechanism for oscillations in this CPG.
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Figure 7.8

An example of the synaptic interaction between two neurons in the CPG in Trito’
nia. Shown is the presynaptic activity measured in the C2 neuron, v (t}, and the
postsynaptic response measured in a DSI neuron, v»(t), as the result of a short pulse
of current injected into C2. The measurement was performed under conditions that
insured that only monosynaptic connections contributed to the observation. The
observed response applies to two out of the three DSI neurons (DSIp and DSIc);
the other DSI neuron (DS1,) exhibits only a slow response. The area under the
initial, positive-going response corresponds roughly to T,‘;Si; that under the slowly
decaying response corresponds to Tzli. The time dependence of the slow decay corre-
sponds to the time dependence of the slow synaptic response function, w(t). Vertical
bar: 40 mV for C2 and 2 mV for DSI. Adapted from Getting (1981).
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The focus of our analysis is to determine if the properties of the CPG
in Tritonia support the mechanism we propose for generating patterns.
Specifically, we ask:

1. Are the observed synaptic strengths consistent with those calcu-
lated from the form of the observed output states?

2. Are the simple update rules (eq. 7.14) sufficient to demonstrate the
emergence of an oscillatory output that qualitatively resembles the
observed pattern?

3. Is the period of the observed output pattern accounted for in terms
of the magnitude and form of the observed slow synaptic response?

4. Are the observed operating levels of the neurons consistent with
the constraint that their output is maximally sensitive to changes
in their net synaptic input (eq. 7.13)7

It is important to emphasize that we are not attempting to reproduce
accurately all of the details of the output behavior of Tritonia. For this
one would necessarily include the detailed biophysical properties of the
neurons and their synaptic connections, as was discussed in chapter 6.

7.3.1 Synaptic Connections

The observed output sequences will be approximated by an oscillation
between a state V+ and its antiphase V= = (1 — V'), where

activity of C2 +1
DSI +1
+ — —
vio= vsSi—-4A || o and
\ VSI-B 0
0
_ 0
V- = 1 (7.23)
+1

These states are used as the stable embedded states in our model.
The short-term connection strengths Tg, and the long-term connection
strengths Tf;, deduced from the outputs V* and V= (egs. 7.21 to 7.23),
are shown in table 7.1. Note that these matrices contain all possible
connections that can be present between pairs of neurons.

How do the predicted synaptic strengths compare with the observed
values? The strength of a synaptic connection is proportional to the
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Fast Synaptic Components, Tﬁ Slow Synaptic Components, Ti[j'
Jj=1 2 3 4
0 +1 -1 -1 0 —1 +1 +1 =1
J -1 - Jo |-
Theory Jo |41 0 -1 -1 )\—0 1 0 +1 +1 2
4 [-1 -1 0 +1 4 |+1 +1 0 —1 3
-1 -1 +4+1 0 +1 +1 -1 O 4
pre
C D VAVBE =
0 +1 e —1 0 o e o C
J -1 - Jo |-
Observed® | =2 |¥1 0 =1 —I A= b o e o D
4 [-1 -1 0 +1 4 i+1 +1 -0 o VA
e -] e 0 +1 e e —0 VB

(a) Abstracted from the data of Getting (1981, 1983b); see text for details. Dots
(®) indicate synaptic connections that are not present in Tritonia; their value
is taken to be zero for purposes of calculation [e.g., Eqs. (3.3) to (3.5)).

Table 7.1

Synaptic connection strengths for Tritonia.
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time integral of the conductance changes induced in the postsynaptic
neuron by a short (¢ < 75) pulse of activity in the presynaptic neuron.
These integrals can be estimated from measurements of the potentials
induced in the postsynaptic neuron by a short (¢ < 7s) burst of action
potentials in the presynaptic neuron. The action potentials in the post-
synaptic neurons must be suppressed so that only direct interactions,
i.e., monosynaptic pathways, contribute to the observed response.

The strength of the observed synaptic components T;j and Tz’? were
estimated from the pairwise measurements reported by Getting (1981,
1983b, Appendix 6.B) (e.g., fig. 7.8). We grouped the data according to
the time scale of the observed synaptic response. Synaptic components
that decayed on a time scale less than 1 sec were designated as fast,
whereas synaptic components that decayed on a time scale substantially
greater than 1 sec were designated as slow. For this simple system we
need only consider the sign of the measured response, and thus detailed
variations between the values of the individual Tg connection strengths
and between the ng‘ connection strengths were neglected. We did not
include synaptic components whose strengths were considerably weak
in comparison with the other components. For example, the observed
synaptic connection from C2 to DSI (fig. 7.8) was parameterized by the
values T§ = To/4 and TH = —ATy/4.

The complete set of connection strengths TS and TZ? that we ab-
stracted from Getting’s data are summarized m table 7.1; note that
theoretically possible connections that are not present in Tritonia are
taken as zeros. This set was also used to construct the equivalent cir-
cuit shown in fig. 7.9. Ambiguities in our assignment of the connection
strengths will be discussed at the end of this section.

The observed transition strength, A (eq. 7.2), was determined by cal-
culating the average magnitude of the fast synaptic components relative
to that of the slow components. This determination contains a large un-
certainty, in part because of the difficulty in separating the fast and slow
contributions to the measured synaptic response. We roughly estimate

A=5to 10 (7.24)

The signs of the experimentally observed synaptic strengths match
those of the theoretically predicted strengths (table 7.1). Three of the
possible twelve synaptic connections show both a short-term and a long-
term response. Connections (i,j) = (3,1) and (%,j) = (3,2) both show
short-term inhibition followed by a long-term excitation, while connec-
tion (4,7) = (2,1) shows short-term excitation followed by long-term
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Figure 7.9
Schematic representation of the equivalent circuit for the analog network model de-
scribing the CPG in Tritonia; symbols as in fig. 7.3. The synaptic strengths contained
in this circuit correspond to the observed connections TE and T'»IJ'» (table 7.1)
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inhibition. The form of these three connections illustrates how the sign
of the net synaptic input to a neuron can change over time.

7.3.2 Network Dynamics

We now examine whether the observed network parameters in Tritonia
indeed give rise to rhythmic output in the network model. We begin our
analysis with a simplified model that accents the role of the observed
synaptic connections in generating stable oscillations. For this simpli-
fied analysis we use two-state neurons with synchronous update rules
(eq. 7.14 with 8t = 7,) and a delta function delay for the slow synaptic
response function, i.e., w(t) = §(t — 71). A more detailed analysis, us-
ing analog model neurons and a smooth synaptic response function, is
presented later.

Immediately after the network has stabilized in the embedded state
v+, the output of the ith neuron is V;(t) = V;, but the delayed output
is V;(t) = Vi(t — ) = V;~. The output of the ith neuron after the next
update is

4
1 -
Vi(t+75) = stp 52 TS 2Vt - 1)+ T 2V —1) (7.25)
j=1
0 +1 0 -1\ [/ +1
= st Jo| +1 0 -1 -1 +1
= gl -1 -1 0 41 -1
i 0 -1 0o o0 / \ -1
0 0 00 [ -1
B -1 0 00 -1
8| +1 +1 0 0 +1
1 0 00/ \ +1
2 +1
_ Jo 34+ _ | +1
= stp 3| —3-2x = 0 for A>0
~1-2X 0
= Vvt

Thus the output of the network is stable on the time scale of rs. After
the network has remained in the state V't for a time 7z, the delayed
output changes to V(t+ 7.) = V(t) = V*t. The output of the ith
neuron after the next update is
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[ 4
1
Vit+71L+7s) = sip 527; @Vt — 1)+ Th (v —1)| (7.26)
J=1
+1
= st = 0 for A>3
= Stp —3+2A |+
—1+2A +1

The network is now in a mixed, unstable state. Using this new value for
the current state in the update procedure gives

4

1
Vilt+ 7L +275) = stp EZ (2V(t+TL+T5)—1)
i=1
+T5 2V - 1) (7.27)
-2 0
I O B D N
TP 1+an T+
14+ +1
= V-

2

The network has now completed a transition from the state V+ to the
state V7. It will remain in this state for a time ¢y ~ 7z, after which the
cycle will repeat itself. The output of the network will oscillate only if
the transition strength is A > 3 (eq. 7.26). This value is consistent with
the observed value (eq. 7.24) of A = 5 to 10.

The simplified analysis presented above suggests that the observed
connection strengths can give rise to rhythmic output in the model net-
work. We now examine the steady-state behavior of the network model
for Tritonia (fig. 7.9) using analog dynamics and a synaptic response
function that is a smooth function of time. The observed form of the
response function, w(t), is approximated by an exponential, i.e.,

1 —t/T
w)=§ e Jsteos
0 otherwise

The analog equations (egs. 7.7, 7.10, and 7.17, and eq. 7.12 with Af; =0)
were simulated (Appendix 7.D) using the observed connection strengths
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Figure 7.10
Simulated output activity from the analog network model describing the CPG in
Tritonia (fig. 7.9). The arrows indicate the start of the simulated output from the

initial states V(t < 0) = V(< 0) = { 0111 )T. The network equations were
simultated using the observed values of Tg and T; 7 see text for details.

TS and T,IJ‘ (table 7.1), the above form for w(t), 7p = 107s, and G l=
Jo/10 for the gain parameter (eq. 7.17). Stable oscillations of the form
described by the previous simplified analysis (egqs. 7.25 to 7.27) were
observed. The output activity for the transition strength A = 10 is
shown in fig. 7.10.

The period observed for the output of the CPG in Tritoniu is 24y =
6 sec to 10 sec (fig. 7.7), while the time constant for the slow synaptic
response (eq. 7.9) lies in the range 71 = 2 sec to 5 sec (Appendix 6.B).
Is this value for the period accounted for by the model? As discussed in
the previous section, the predicted value for ¢o depends on the values of
rr and X and on the form of the response function w(t). In Table 7.3 we
give an analytic expression for t; appropriate for the above weighting
function, from which we find 2t = 1 sec to 4 sec for values of 77 in
the range 2 sec to 5 sec and A in the range 5 to 10. However, this
estimate of 2¢g may be inaccurate; the effective value of the X should
be significantly smaller than the observed value because of the relatively
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large number of T£ connections that are absent. We checked this point
by simulating the analog equations for the network (see above) with
different values for X; the dependence of 2¢; on ) is shown in fig. 7.11. As
expected, the theoretical range of values for the duration was longer, i.e.,
we calculated 2ty = 5 sec to 20 sec. The estimate compares favorably
with the experimentally observed range 2t; = 6 sec to 10 sec (2t =
2.577 22 5 sec to 12 sec for A = 10; fig. 7.10).

7.3.3 Neuron Operating Levels

We now consider the issue of the mean operating level of each neuron,
;. As discussed in section 7.2, the mean operating levels should obey
the relation given by eq. 7.13 in order that the firing rate of each neuron
is most sensitive to changes in the value of its input. For Tritonia, this
relation becomes

0
4
1 Jo —1-A
j=1 -1 +A

with A =5 to 10. We first consider the DSI neuron (i = 2): eq. 7.28 im-
plies either that this neuron should be in a tonically excited state when
it is functionally isolated from its synaptic inputs (6, < 0), or that this
neuron requires an external excitatory input for the CPG to be active
(Istim; > 0). A combination of both of these features is observed in
vivo (Getting 1983a; Getting and Dekin 1985). The DSI neurons fire
tonically, although at a reduced rate, in isolation (Getting 1983a). Ac-
tivation of the CPG in Tritonia requires an effective excitatory input to
the DSI neurons (Getting and Dekin 1985). After this input is removed
the output from the CPG gradually dephases and the CPG becomes
inactive. We next consider the VSI neurons. In the absence of synaptic
inputs and external inputs, the output of VSI-B is expected to be qui-
escent (04 > 0). This result is in agreement with observation (Getting
1983b).

The problematic neuron is VSI-A, which is not known to receive an
external input while the CPG is producing oscillatory output. Thus,
according to eq. 7.28, VSI-A should have a positive operating level. In
practice, VSI-A exhibits a weak tonic output when it is functionally iso-
lated (Getting 1983a). Violation of eq. 7.28 suggests, by the arguments
of section 7.2, that the oscillations in the output of VSI-A will be less
robust than those of the other neurons. This conclusion is consistent
with the observed outputs, i.e., the relative change in the firing rate of
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The output period, 2¢g, of the analog network model for Tritonia (fig. 7.9) as a
function of the average transition strength A. A period of 2ty ~ 6 sec to 10 sec,
roughly equivalent to 271 £ 2t £ 57L, corresponds to the period observed in Tre
tonia (fig. 7.7). The solid line delimits the range of values for A estimated from the
measured connection strengths (e.g., fig. 7.8). For a value of A near 10, the period
deduced from the model is in accord with the observed period. The spectrum 2to( A

was determined by simulating the network equations using the observed values of Tij

and Té, see text for details.
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VSI-A during the oscillations is smaller than that of the other neurons
in the CPG (fig. 7.7). Note also that this neuron is weakly coupled to
other neurons in the network (table 7.1). Hence VSI-A is expected to

play a relatively minor role in the CPG, as noted previously (Getting
and Dekin 1985).

7.3.4 Reexamination of the Connection Strengths

We consider in detail several assumptions that were made in assigning
the TS and Té’ synaptic strengths. The connection from DSI to C2
exhibits short-term excitation followed by a much weaker long-term ex-
citation. We ignored the weak long-term effect; thus 75, = +Jo/4 and
T = 0. A similar choice was made for the inhibitory connection from
VSI-B to the DSI, i.e., TQS4 = —Jo/4 and T& = 0. Both of these rela-
tively weak long-term components are believed to contribute primarily
to the turning off of the CPG (Getting, unpublished), an effect we do
not consider at present.

The synaptic connection from the DSI to VSI-A exhibits two short-
term responses as well as a long-term response. Short-term inhibition
is preceded by a relatively shorter period of excitation, with the pair
followed by long-term excitation. We ignored the initial excitation and
assigned 13, = —Jp/4 and T = +XJp/4. A different choice for the sign
of T§, does not significantly affect the output pattern of the network.

The synaptic coupling between VSI-A and VSI-B could not be mea-
sured under conditions that suppressed possible indirect interactions,
i.e., polysynaptic pathways, between these neurons (Getting 1983b). Ex-
ternally exciting VSI-B caused VSI-A to fire weakly; we assigned T3, =
+Jo/4 and T4 = 0. Externally exciting VSI-A caused a slow depolar-
ization in VSI-B, but did not cause it to fire. We chose Ty =Tk =0,
but one cannot rule out the possibility %5, = 0 and T > 0. An analysis
of the network dynamics, similar to that performed above {eqs. 7.25 to
7.27), shows that stable oscillations persist as long as Tk is weaker (by
approximately 25% or more) than the other slow synaptic components.

7.4 Discussion

7.4.1 Properties of the Model

We have presented an associative neural network model that is capable
of generating patterns of linear sequences or cyclic sequences of states.
The patterns are stored in synaptic connections that have two compo-
nents. One component, with a fast response time, stabilizes the individ-
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ual states that comprise a pattern. The second component, with a slow
response time, triggers the transitions between the consecutive states in
a pattern.

The present model for generating output patterns has several attrac-
tive structural and functional features. It describes pattern generation
in arbitrarily large, highly interconnected networks. The model does not
necessarily rely on specific organization of the connections (e.g., a ring-
like organization). The synaptic connections are not symmetric and the
network can contain both excitatory and inhibitory synapses.

The distributed nature of the network and the inherent feedback be-
tween neurons endows the network with a high robustness. Removing at
random as many as half of the synaptic connections does not affect the
generation of patterns, except for reducing the number of states that can
be embedded, i.e., used to form patterns, in the network. The patterns
are stable to moderate levels of stochastic noise. An individual pattern
can be accessed in an associative manner, such as by an input that only
partially resembles one of the embedded states in the pattern. Finally,
the model employs a simple relation between the output patterns and
the synaptic connections.

The network can produce multiple patterns of different lengths and
topologies. Neither the embedded states nor the patterns need to have
any specific structure. In fact, the model works optimally with patterns
of random, uncorrelated states. The number of states that can be em-
bedded in the network scales linearly with the number of neurons in the
network.

The present model does not use pacemaking cells or a system clock
to generate patterns. Rather, the sequential output results from the
interplay between fast synaptic components, which stabilize the embed-
ded states, and slow synaptic components, which trigger the transitions.
The detailed form of the slow synaptic response function is not critical.
It can be either a sharp function of time, such as a delta function de-
lay, or a smooth function, such as a low-pass filter. In particular, the
form of the slow synaptic response may fluctuate from one synapse to
another. The network will function properly so long as most of the slow
components have roughly the same time constant.

Amari (1972), Fukushima (1973), and Kohonen (1980) have proposed
models for generating temporal patterns in which all of the synaptic
connections are formed according to rules similar to the rule we use to
form the slow synaptic components (eq. 7.2). In contrast to the model
we present, these models function as finite state machines in which the
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existence of temporal patterns is dependent upon an internal synchro-
nizing clock and on synaptic delays that are sharp functions of time.*

Initiation of a Pattern A particular output pattern can be selected
by an external input, Iy, (eq. 7.10 and fig. 7.3). This input must
place the network in an initial state that has a substantial overlap with
one of the embedded states in the desired pattern. The network will
rapidly relax to this embedded state and subsequently proceed to gener-
ate the full pattern. The external input need be present only for a brief
time, At < 7L, if the mean operating levels of the neurons are properly
matched to their average synaptic input (eq. 7.13). Otherwise, lasting
inputs may be required to maintain the output pattern.

A variety of mechanisms exist for terminating a cyclic output se-
quence. A direct way is to use an external input to drive the network
into a state that is not part of the pattern (fig. 7.1B). Similarly, raising
the mean operating level, 8;, of the majority of the neurons will halt the
output. An indirect way of ending a pattern is to change the value of
the transition strength, A, to a value outside the range of stability (see
Appendixes 7.B and 7.C). The output will gradually dephase until the
pattern has effectively decayed. A similar decay will occur for an output
pattern that is initiated in a network in which the number of embedded
states is above its maximum value (a., see eq. 7.18).

Modulation of the Output Period The output period of a pattern
1s proportional to #g, the time spent by the network in each state. This
time scales linearly with the time constant, 71, of the slow synaptic
response, but is a decreasing function of the transition strength, A.%
Thus a change in either 77 or A will induce a substantial change in the
output period. The value of ¢y, and thus the period, is fairly insensitive
to changes in either the operating level, 8;, or the gain, G, of the neurons.
A change in either of these parameters will change ¢y by at most the value
of ~ TS.

Patterns of Correlated States We employed formalized Hebb (1949)
learning rules to specify the strength at the synaptic connections in terms

1A model that relies on time-dependent synaptic strengths to produce rhythmic
output has been suggested by Peretto and Niez (1986). Dehaene, Changeux, and
Nadel (1987) considered a model for temporal sequences, in the context of bird song,
that uses high-order synapses. A model in which a rhythmic output is driven by
stochastic noise has been proposed by Buhmann and Schulten (1987).

®The period of the output is independent of A when the response function of the
slow synapses is given by a delta function time delay, ie., w(t) = §(t — 71); see
tables 7.2, 7.3.
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of the embedded states. These rules are appropriate when the overlaps
between the states in a pattern are small. However, when the states
are correlated, i.e., when they have substantial overlaps, the number of
states that can be embedded in the network is severely limited.

Correlations among output states are expected in biological systems.
For example, some regions of the vertebrate nervous system exhibit low
levels of activity, i.e., only a small fraction of the neurons fire simul-
taneously (Shepherd 1979). The large fraction of neurons with quies-
cent outputs suggests that the embedded states of these networks are
substantially correlated. Correlations among the embedded states exist
naturally in problems of pattern and speech recognition.

Rules that are suitable for embedding correlated states in our network
are presented in Appendix 7.A. With these rules, the number of states
that can be embedded scales linearly with the size of the network, in-
dependent of the correlations. The underlying mechanism for pattern
generation with these new rules is the same as with the formalized Hebb
(1949) rules.

Overlapping Patterns A limitation of the model we described is its
inability to generate overlapping patterns. Consider a network in which
two of the patterns share the same embedded state, e.g., fig. 7.12. When
the output of the network reaches the state in common to both patterns
((u,v) = (6,1) in fig. 7.12), there is an ambiguity as to which state
occurs next in the pattern. The reason for this ambiguity is that only
transitions between consecutive states are encoded in the synaptic con-
nections. This problem can be rectified by encoding transitions that
map more “distant” states along the pattern. The delay time of these
additional synaptic connections will be proportional to the “distance”
between the states. For instance, the ambiguity that occurs when pat-
terns cross (fig. 7.12) can be resolved by adding synaptic components of
the form (cf. eq. 7.2)

-
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The additional contribution to the input of each neuron via the above
synapses is
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The (normalized) synaptic response function w(2)(t) averages over the
output histories of the neurons with an averaging time of ¢ ~ 27;. The
contributions of the neural inputs hf(z)(t), together with hf(t), cause the
transitions to depend on the previous two output states of the network.
With reference to fig. 7.12, the network will make a transition to the
state (4,v) = (7,1), and not the state (u,v) = (7,2), if the output
history of the network is (4,1) — (5,1) — (6, 1).

The synaptic strength and the corresponding neural inputs defined by
egs. 7.29 and 7.30 can be generalized to incorporate patterns that share
several states in common (e.g., Keeler 1987). The dynamics of these gen-
eralized networks can be analyzed using the adiabatically varying energy
defined in eq. 7.16, where hL(t) now represents the sum of all the time-
delayed contributions. This scheme for embedding sequences in synapses
with multiple time delays has been recently applied to speech recogni-
tion problems by Tank and Hopfield (1987). Their implementation used
a layered neural architecture with a localized representation for both the
embedded states and the patterns. The effect of adding synapses with
multiple time delays on the storage capabilities of fully interconnected
networks, especially those using a distributed representation, is yet to
be studied.

Finally, we note that the problem of embedding correlated states as
well as overlapping patterns can be circumvented by adding neurons that
function as “hidden units,” i.e., neurons that do not provide a direct
output from the CPG. These neurons may enlarge the representation
of the embedded states in a manner that reduces the overlaps between
different states or patterns. This suggests that the number of motor-
controlling outputs from a CPG can be much smaller than the total
number of neurons in the network.

7.4.2 Biological Feasibility

Analysis of the CPG in Tritonia We used our associative network
model to analyze the CPG controlling the swim rhythm in the mollusc
Tritonia. This is a small network, yet it contains many of the basic fea-
tures inherent in our model. The rhythmic output could be understood
by a simplified analysis that employed threshold units as neurons and
that replaced the response function of the slow synapses by a simple
time delay. The simplified analysis served to emphasize the role of the
connections between neurons in determining the collective output of this
CPG. A more extensive analysis showed that our model accounts for the
period of the observed output and for the mean operating characteristics
of the individual neurons.
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Figure 7.12
State diagram of two patterns that share a single state, je., V&1 = V&2 in common.

The transition labeled TL{(2} refers to a set of synaptic strengths Té‘.(z) oc (2\47’1 -

1) (2Vj”1 —1). For a network producing the v-1th pattern, but not for one producing

the v=2th pattern, these synaptic connections remove the ambiguity in choosing
between V71 and V72 as the output state that should follow Vel
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The sign and time course of the observed synaptic strengths were in
accord with the values predicted by the formalized Hebb (1949) learn-
ing rules (eqs. 7.1 and 7.2). This suggests the utility of such rules for
predicting the strength of the underlying synaptic connections from the
observed output states.

Our analysis demonstrates that, within the framework of our model,
even a small network can function with the elimination of many of its
theoretically possible connections. Many more fast synapses than slow
synapses are present in Tritonia. The fast synaptic components stabi-
lize the output states, and thus relatively few of these synapses can be
eliminated (i.e., 25%; table 7.1). Partial elimination of the slow synaptic
components can be offset by an increase in the transition strength, A.
‘This compensation is observed in Tritonia, where the relatively small
fraction of slow components observed to be present (i.e., 75% of all pos-
sible connections are eliminated; table 7.1) is offset by a suitably large
value for A (i.e., A =5 to 10).

Our analysis also showed how the required balance between the mean
operating level of each neuron and the value of its external inputs and
the strength of its synaptic connections can be simply estimated. We
argued (section 7.3) that the mean operating level of the VSI-A neuron in
Tritonia is set too low. This result explained the relatively weak changes
in the firing activity of VSI-A during periods of otherwise active output
by the CPG (fig. 7.7). Our result further suggests that the activity
of VSI-A will alternate more sharply between bursting and silence if its
operating value is raised, e.g., by the injection of a small hyperpolarizing
current.

Multiphasic Synapses and Synaptic Delays A variety of biophys-
ical and biochemical mechanisns allow synaptic connections to act on
more than a single time scale (for review, see Kehoe and Marty 1980).
Chemically mediated synapses can show both fast and slow responses,
as well as a combination of the two. For example, the synaptic connec-
tions in Tritonia act on time scales that differ by up to a factor of 30
(Getting 1981). Some of the chemically mediated synapses present in
the network controlling the flight rhythm in the locust exhibit a delayed
excitatory response (Robertson and Pearson 1985). Chemically medi-
ated synapses in the stomatogastric ganglion of the lobster exhibit both
prompt and delayed inhibitory responses (Hartline and Gassie 1979).
Electrotonic connections provide a potential mechanism for the pres-
ence of both slow and fast synapses in a network. The high resistance
of the electrotonic couplings between neurons in the CPG controlling
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feeding in the snail Helisoma causes their response time to be an or-
der of magnitude slower than other synapses in the network (Kaneko,
Merickel, and Kater 1978). The converse situation occurs in the cir-
cuit controlling feeding in the molluse Nevanaz, where the electrotonic
couplings act rapidly compared with the chemically mediated synaptic
connections (Spray, Spira, and Bennett 1980).

Synaptic delays can result from the delays inherent in active propa-
gation along a relatively long process. For example, the transmission
delays between ganglia of neurons in the leech are much longer than
the response time of individual synapses (Stent et al. 1978). Synaptic
delays may also occur when the synaptic connections TZIJ‘ between pairs
of neurons are mediated by interneurons. For example, the postsynaptic
response observed in pyramidal cells of the olfactory cortex contains a
delayed inhibitory component. The delayed component probably results
from a disynaptic pathway mediated by an interneuron (Haberly and
Bower 1984). It may play a role in generating the rhythmic activity of
the olfactory cortex (e.g., Freeman 1975).

Neurons may contain cellular as well as synaptic delays. Cellular de-
lays can affect the response time of a neuron to many or all of its synaptic
inputs. A general theory for associative network models that contain cel-
lular delays does not yet exist. However, when the response time of the
cellular delay is short compared to the slow synaptic response time, 7z,
the separation of the time scales between 75 and 77 is maintained and
the output properties of the network model are unaffected. Some well-
characterized cellular delays can be considered in terms of an effective
synaptic delay. For example, the outward potassium current I4 (Connor
and Stevens 1971) is responsible for the delayed response of the VSI-B
neuron in Tritonia (Getting 1983b, and chapter 6). This current has the
effect of allowing only slow excitatory inputs into VSI-B, but does not
affect the time scale of the inhibitory connections (see table 7.1).

Lastly, our model is capable of producing rhythmic output in large
networks that contain only monophasic connections. In this case, a
synapse has either a fast time response or a slow time response, but not
both. The strength of each synapse is chosen according to the appropri-
ate Hebb rule (eqs. 7.1 and 7.2). The minimum value of the transition
strength, A, depends on the relative number of fast versus slow connec-
tions (eq. 7.20). This suggests that our model may be appropriate for
analyzing CPGs that do not contain multiphasic synapses.

Modulation of the Output The output activity of many CPGs can
be initiated and modulated by external inputs from command neurons
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(Kennedy, Evoy, and Hanawaly 1966; Kupfermann and Weiss 1978).
These neurons modulate a select fraction of neurons in the CPG. In
addition, the output of CPG can be affected by the concentration of
circulating neurohormones. These hormones affect the operating char-
acteristics of neurons and possibly the strength of certain synaptic con-
nections (e.g., Pinsker and Ayers 1983; Marder 1984; Harris-Warwick
1986).

By what mechanisms can these inputs or hormones function within
the context of our model network? Large changes in the period of the
output can occur if the external inputs or neurohormones affect either
the time constant of the slow synaptic response, 77, or the transition
strength, A. For example, a neuromodulator that selectively augments
the strength of the slow synaptic components, or diminishes that of
the fast components, will shorten the period of the output. It will be
interesting to see if neurophysiological correlates for these and related
predictions are found.

It should be emphasized that we have considered so far only networks
with parameters, e.g., synaptic strengths and neuron operating levels,
that do not change in time. Biologically these parameters undergo slow
changes, such as increases (facilitation) or decreases (fatigue) in the
values of the synaptic strengths. These slow changes may modulate
the overall behavior of the network. For example, a gradual increase
in the mean operating levels will dephase the output pattern of a CPG.
This will eventually terminate the oscillatory output, as observed for the
CPG in Tritonia (fig. 7.7) (Lennard, Getting, and Hume 1980; Getting
1983b).

Networks with Only Inhibitory or Only Excitatory Connec-
tions The connection strengths T;]q and T,’;’ determined by the formal-
ized Hebb rules (egs. 7.1 and 7.2 with uncorrelated embedded states)
contain both inhibitory and excitatory components. Biological systems
may contain predominantly inhibitory or excitatory connections. We
thus consider whether our model network can properly function when
the synaptic connections are modified so that most or all of the connec-
tions have the same sign.

The stability of the model network depends on its ability to relax to
one of the embedded states. This relaxation is governed by the fast
synaptic components, T;j The mean value of these connections is ap-
proximately zero (eq. 7.1). For the simple case in which these synaptic
strengths are uniformly shifted from the values determined by eq. 7.1,
the modified strengths Tgl can be expressed as
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' J

St (7.31)

The mean value of the synaptic strength is now J/N; J < 0 if the
connections are primarily inhibitory and J > 0 if the connections are
primarily excitatory. The components T;j contribute to the stabilizing
term in the energy function for the network (first term in eq. 7.16). The
mean value J/N contributes an additional term to the energy of the

form

1 N 5 7 N 2
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When the components TSI are predominantly inhibitory the addi-
tional term in the energy (eq. 7.32) is positive. This contribution is at
a minimum for states in which the number of neurons that are firing
roughly equals the number that are quiescent. The embedded states in
the network correspond to stable states of this form. Thus the addi-
tional term in the energy does not change the function of the network.
Consequently, our model can describe pattern generation in networks
containing fast synaptic components that are only inhibitory.

When the fast synaptic components Tgl are predominantly excitatory,
the additional term in the energy is negative. This term is at a minimum
when all of the neurons are quiescent or when all of them are firing.
When the mean excitation is sufficiently large, such that J > Jp (eq. 7.1),
the network will tend to generate either an output state in which most of
the neurons are firing or in a state in which most neurons are quiescent.
Thus the embedded states are destabilized for large values of J. The
above arguments also hold for Hopfield’s network (Denker 1986b).

The slow synaptic components Tf]‘ do not substantially affect the
stability of the states embedded in the network when the synaptic re-
sponse function w(t) is a smooth function of time. Our model network
will function properly if the slow synaptic components are modified, as
above, to be either predominantly inhibitory or predominantly excita-
tory. Note that adding an offset to either the Tg or the T}% components
requires a concomitant change in the mean operating levels of the neu-
rons (eqs. 7.12 and 7.13).

Application to Related Biological Phenomena We have focused
our study on aspects of animal behavior that involve the generation of
rhythmic motor outputs. However, many other behaviors can be de-
scribed as a fixed linear sequence of motor outputs, such as bird song
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and certain aspects of courtship (see, e.g., Lorenz 1970). The model we
presented may be relevant for describing aspects of the neural circuitry
that underlies this larger class of behaviors.

Another possible application of the model involves the relation be-
tween learning rules that depend on the history of a neuron’s activity
and the temporal associations inherent in classical conditioning (Barto
and Sutton 1982; Tesauro 1986; Klopf 1987). Finally, the network mod-
els we described can be used for recognizing sequences of sensory input
that correspond to a pattern of embedded states (Kleinfeld 1986; Amit
1988).

Learning and Plasticity One of the central features of the model
is the simple relationship between the output patterns and the connec-
tions, i.e., the formalized Hebb (1949) learning rules (egs. 7.1 and 7.2).
These rules allow new patterns to be embedded in the network by mod-
ifying the synapses both incrementally in time and locally in space; the
change to each synapse depends only on the activities of the postsy-
naptic and presynaptic neurons during the learning of the new pattern.
Local updating of the synapses makes the present model particularly
suitable for large, complex systems that are continuously updated as
patterns are modified or added. Other learning rules may be used in
biological systems, but they probably share many of these features (see
also Appendix 7.A).

We introduced the relation between the “sequential” form of the T,’;“
synapses (eq. 7.2) and their slow dynamic response (egs. 7.6 to 7.9) as an
ad hoc assumption. These two features may, in fact, be closely related
to each other. If one considers the evolution of the synaptic strengths in
terms of a dynamic learning mechanism, the different final forms of the
T;j and the Tf; synaptic components may be the result of the different
time scale of their dynamic response. For example, the T,g‘ components
can relate two experiences that are separated by the characteristic re-
sponse time of the slow components, while the Tg components can only
aid in recalling the presence of either experience. Tt would be interesting
to implement this idea in a biologically plausible model for learning.

This work was supported in part by the National Science Foundation
(Grant PHY82-17853). The address of David Kleinfeld is Room 1C-
463, AT&T Bell Laboratories, Murray Hill, New Jersey 07974. Elec-
tronic mail should be addressed to dk@physics.att.com. The address
of Haim Sompolinsky is Racah Institute of Physics, Hebrew Univer-
sity, Jerusalem, Israel 91904. Electronic mail should be addressed to
sompoli@hbunos.bitnet.
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Appendix 7.A: Rules for Forming Synapses
with Correlated States

In this appendix we present rules for forming the T;j and T,? synaptic
components that are suitable for generating patterns with correlated
states. These rules extend the results of a recently proposed model for
incorporating correlated states into associative networks.

For mathematical convenience we define the output of the neurons in
terms of a variable that ranges between —1 (quiescent) and +1 (maxi-
mum firing rate), i.e,,

S;=2Vi—1 (7.33)

The embedded states are thus given by S?, S2,...,587, r< N, whereris
the length of the pattern and N is the number of neurons. For simplicity
of notation we consider networks that generate a single pattern. We
assume that each component of S* = {SY}, is either +1 or —1, and
confine our results to the high-gain limit of the network (eq. 7.14).

The model makes use of the “pseudo-inverse” method (Kohonen and
Ruohonen 1973; Personnaz, Guyon, and Dreyfus 1986; Kanter and Som-
polinsky 1987). This method requires that the embedded states are lin-
early independent, but otherwise places no restrictions on the choice of
states.

We define the correlation matrix, C, between these states by

N
1 v
Cuv:-ﬁ-;srsi’ vyu=1,---,r. (7.34)

For orthogonal states, C reduces to C#¥ = 8. A set of r states, O,
02, ..., O", that are orthogonal to the S”s can be constructed from
linear combinations of the S¥s, i.e.,

of =Y Cylst (7.35)
v=1
It is straightforward to show that
1 &
bov
5 X_; oLy = §m (7.36)

Using this property, we define the synaptic strengths T3 to be
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J r
TS = ﬁﬂ dostoy, i#j (7.37)
u=1

The synaptic connections Tg (eq. 7.37) will map the state S* back
onto S* regardless of the size of the correlations between the embedded
states. Thus, these connections stabilize the network in each of the
embedded states.

To generate a pattern of embedded states, we define the synaptic
strengths Tzf to be

7 r-1
TE = ﬁ“ SOk, i (7.38)
p=1
This matrix maps the state S# onto the state S#+1 (see also Guyon,
Personnaz, Nadal, and Dreyfus, 1988).

A network using the above rules (eqs. 7.37 and 7.38) generates disjoint
patterns with arbitrarily selected (linearly independent) states. The
maximum number of states that can be embedded is p = r ~ N (cf.
eq. 7.19). The lower bound on X is now A > (1 —a) = (1 —p/N), which
goes to zero as the number of embedded states approaches its maximum
limit. Iterative algorithms for embedding additional (correlated) states
into an existing network are discussed by Denker (1986a) and Diederich
and Opper (1987).

Appendix 7.B: Calculation of t, for a Rela-
tively Long Pattern

In this appendix we derive an expression for the steady-state value of #,
the time between transitions, in terms of the transition strength A and
the slow synaptic response time 7. This expression is calculated for a
network that produces a pattern that contains a relatively large number
of embedded states (1 « r < p < N) (Sompolinsky and Kanter 1986).
As in Appendix 7.A, we take S; = 2V; — 1.

Let ¢ = 0 be the time at which the output state of the network has
Just changed to S#. The transition to the next state, at time ¢t = {g,
is initiated by those neurons whose activity changes in going from the
puth to the pu+1th state, but whose activity in the p+1th state equals
that in the first through p—1th states. For this population of neurons,
SY = -5t for v < p and for v = ft + 1. The activity of the network
during the interval ¢ < 2t is
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—-S¥ fort<o0
Si(t) =< +SF for0<t<tg
=S fortg <t < 2t

where we have assumed that 7¢ < 77 and that the network is operating
in the high-gain limit (eq. 7.14).

The transition time is found by comparing the time-averaged inputs
hE(t) with the stabilizing inputs h$(t). The inputs ¢y the neurons dis-
cussed above, for time 0 < t < tg, are given by (eq. 7.4),

N
RS () =Y TS S;(t) = +S
i=1

and (egs. 7.6 and 7.7)
i

N
A Z Tk / S; (") w(t —t') dt’
i=1

~(r=1)to

~(s=2)to
= A S,?/ w(t —¢)dt' + - -

—(p-1)to

hi(t)

—to 0
+S;“1/ w(t—t’)dt’+5,f‘/ w(t —t")dt’

2o —to

i
+5pT1 / w(t — 1) dt’]
0

(n=1)to+t t+to
ASE = / w(t) dt’ + 2/ w(t')dt
0 t

where we took Af; = 0 (eq. 7.12). A transition will occur when the
inputs hf(20) and h7(fo) are equal in magnitude and opposite in sign.
Confining ourselves to the limit ptq — oo (i.e., puto > 1), so that the
value of the first integral is unity (eq. 7.8), we find

%(1 — ;) - /tzt w(t') dt’ (7.39)

The above equation has a solution only for A > 1.

We used eq. 7.42 to calculate the dependence of £y on A for four inter-
esting response functions (see table 7.2). These functions, normalized
to unity (eq. 7.7) with a mean response time of 7 (eq. 7.9), are: (1) A
delta function, corresponding to a sharp time delay, such as that caused
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Response Function Duration of Each State®
Name wit) t, (W) Range

Delta

function 8(t—1) s 1€A< 00

delay

Uniform I€A< oo

averaging L ; GL=7w/2) St (rp+7,,/2) | 1 oL 7L <ty K27
Tw Tw 22

with

delay 0 ; otherwise with 1, € 27

Exponential L tm ;0€t<oo rln | At . (]2_)\) ] 1<x < 2®
TL -

averaging Q ; otherwise 0<t, <o

. 2 t

Linear — [Il==—]:;0<t < 3 31— /)\—1 1€A<e

31']_ 37‘[_ -
. . 22
averaging 0 ; otherwise 30=/1/2)7. €t, €37

(a) These results were derived for steady-state conditions, with 7y >> rg and
with the network operating in the high-gain limit [Eq. (2.14)]; see text for
details.

(b) The network will not produce stable oscillations for values of A in the range
A2

Table 7.2
Duration of the output states for a relatively long pattern.

by active propagation along an axon. For this case, ?(t—) = S(t — ).
(2) Uniform averaging after a delay, used for the simulations shown in
figs. 7.5 and 7.6. The width of the response is 7y and the delay is given
by (t2 — 7w /2). (3) Exponential averaging, corresponding to the charg-
ing relation for a capacitor or to simple low-pass filtration. (4) Linear
averaging, corresponding to a linearly decreasing ramp function.

An interesting result is that stable oscillations cannot be sustained
with an exponential averaging function for values of A greater than
2. Exponential averaging heavily contributes relatively recent values
of Si(t) to the time-averaged outputs S;(¢). This leads to dephasing of
the transition for large values of A.
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Appendix 7.C: Calculation of t, for Biphasic
Oscillations

In this appendix we derive an expression for the steady-state value of
o for a network that produces biphasic oscillations. As in Appendixes
7.A and 7.B, we take S; = 2V; — 1. Let { = 0 be the time at which the
output state of the network has just changed to S*. The state of the
network at all previous times, assuming 7s < 7r and that the network
is operating in the high-gain limit (eq. 7.14), is

_f =8# for —(2n+ 1)tg <t < —2niy, n=0,1,2,...
S(t<0)= { +5#  for —2nty < t < —(2n — Dt

These states are used to determine the time-averaged output S(t). The
inputs to each neuron at time ¢, 0 < t < #g, are thus (eq. 7.4)

hi(t) = +S!
and (egs. 7.6 and 7.7)

t 0
RE(t) = —ASH [/0 w(t—t’)dt'—/ w(t —t')dt’

to

—to
[ i)
-2ty

where we took Af; = 0 (eq. 7.12).
At time t = %y a transition to the state S# occurs, implying that
h?(to) = —h¥(to). This leads to

% (1 _ %) _ ni; / ) e (7.40)

(2n—1)to

where use has been made of eq. 7.8. The above equation for #5 has a
solution only for A > 1.

We used eq. 7.40 to calculate the dependence of t; on A for the four
response functions discussed in Appendix 7.B. The linear averaging func-
tion, which approximates the slow synaptic response observed in Trifo-
nia, was used for the simulations shown in figs. 7.10 and 7.11. The
results are shown in table 7.3. A surprising result is that stable oscil-
lations cannot be sustained with a linear averaging function (with no
missing synaptic connections) for values of A between (2n) and (2n+ 1),
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Response Function Duration of Each State®
Name w(t) () Range
Delta
function ot — 1) 8 I€A< o
delay
Uniform 1€A<o
T
averaging L s =1/ €t € Grptraf?) | 1a | == + L 7L <ty €27
Tw Tw 2A
with
delay 0 ; otherwise with 7, <2
Exponential 1 e 0K 1< 27 tanh™! [%l 1<A < oo
L
averaging 0 ; otherwise 0<t, <o
3r
Linear 2 - 0gt€m L o /A1 ]| @D Eragm®
37 3L 2n—-1 —_—
2nh 3 3
. . . TL TL
averaging 4] ; otherwise with n=1,23, --- ? <t, € 1

(a) These results were derived for steady-state conditions, with 7| >> 75 and
with the network operating in the high-gain limit [Eq. (2.14)]; see text for

details.

(b) The network will not produce stable oscillations for values of X in the range

2n <A< (2n+1), n=1,2,3, ...

Table 7.3

Duration of the output states for biphasic oscillations.

n=1,2,3,..

. . The network will initially oscillate for any value A > 1,

but if A is in a forbidden range the oscillations will eventually decay.
This phenomenon results in gaps in the allowed spectrum of ¢p(A) (see
table 7.3).

Appendix 7.D: Difference Equations for
Numerical Simulations

The differential equations that describe sequence generation can be writ-
ten as a set of finite difference equations. Time is quantized in terms of
the discrete variable %, and the time constants 75 and 77 are given by
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the integer variables kg and «p, respectively. These equations provide
a suitable representation for numerical simulation of the sequence gen-
erator. As in Appendixes 7.A through 7.C, we take S; = 2V; — 1. The
discrete versions of analog dynamic equations (eqs. 7.10 and 7.12) are

N
ui(k +1) = (1 - :—5) ui(k) + é > (T;j S;(k) + TS '5‘,—(127) (7.41)

j=1

where S;(k) and wu;(k) are related by a nonlinear gain function, e.g.,
S;(k) = tanh[2G(u;(k) — 8;)], and (eq. 7.7)

Si(k) = Z — Dw(l) (7.42)

The discrete convolution for S;(k) can be turned into a recursion re-
lation for broad classes of w(k). We present four examples.

(1) Delta function time delay, i.e.,

wlk) = 8(k — kL) (7.43)
for which
Si(k) = Si(k — K,L) (7.44)

(2) Uniform averaging after a delay, i.e.,

w(k):{ 1/I€W (fSL—Ew/Q)SkS(K:L—}—Ew/Q) (7.45)

0 otherwise
for which

S,(k) = Sz(k — 1) + (1/I~va) [S,(k — K71 + Ew/Q)
—Si(k—1—%r — rw /2)] (7.46)

(3) Exponential averaging, i.e.,

rp)e~k/xe o
w(k) = { (()1/ pleTHre 0 <k (7.47)

otherwise

for which
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Si(k) = e~ M Sk — 1) + (1/kL)Si(k) (7.48)

(4) Linear averaging, i.e.,

oty = { i Hsm) Gk 0
for which
S,’(k) = 25,‘(’6 - 1) - Si(k - 2) + (3/2KL) [Si(k‘) — S,;(k' - 1)]

—(1/263) [Si(k — 1) — Si(k — 3k — 1)] (7.50)
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