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Abstract

The relation between experimental observation and the results of
phenomenological theories is examined for three small, invertebrate nervous
systems: (1) Recurrent circuits, constructed in vitro, that exhibit bistable output
behavior. These circuits act as neuronal memory circuits. (2) The recurrent
network that controls escape swimming in the mollusc Tritonia. (3) The
feedforward network that meditates the local bending reflex in the leech. We
suggest that the dynamic behavior of these networks can be understood by
simplified models that treat neurons as threshold or sigmoid-like units and
synapses as linear elements. We discuss simple rules that may link the underlying

synaptic connectivity to the pattern of output activity in these circuits.

Introduction

Nervous systems are capable of producing spatiotemporal patterns of electrical activity.
These patterns may be controlled by inputs from higher nervous centers or external stimuli.
Alternatively, the patterns may be sustained as a consequence of internal interactions.
Neurons and the connections between neurons have complicated physiological properties. It is
a matter of continued controversy as to how much of this complication must be taken into
account in understanding the basis for patterned output. We approach this issue by direct
comparison between phenomenoclogical models of nervous activity and the results of

experiments on small nervous systems.

1 On leave from the Racah Institute of Physics, Hebrew University, Jerusalem, 91904 Israel.
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The models we consider treat neurons as threshold devices that integrate over individual
action potentials and treat the connections between neurons as linear elements. This
description allows one to define rules that relate the form of the output pattern to the
underlying synaptic connectivity. In the present work, we examine the application of such

rules to a number of small nervous system.

In vitro circuits with bistable outputs

The first topic we consider is the theory and experimental characterization of circuits
that exhibit bistable output behavior (Kleinfeld et al, 1990a). These circuits have two
possible persistent output states and encompass the old idea of ‘reverberating loops’.
Introduction of a brief stimulus pulse, ¢.€., just a few action potentials, can trigger sustained
firing in the output of one or neurons in the circuit (Fig. 1). Bistable circuits are the most
rudimentary example of networks that have multiple, persistent output states. Such systems
have been proposed as models of associative memory (Hopfield, 1982; 1984). It would be
useful to understand the dynamics of a minimal circuit that can perform this fundamental

neurobiological task.

Input M

A Brief Stimulus.........
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:% ......... Triggers Sustained Firing

Figure 1. Schematic of a circuit that functions as a short-term memory. An input of only a few action

potentials is capable of changing the output from quiescence to spiking for a relatively long period of time.

Theory. Bistable output activity in populations of neurons has been studied by Harth
et al. (1970), Wilson & Cowan (1972) and Hopfield (1984). Bistability can, in principle, be
realized in a circuit with only two neurons. These and other studies of simple circuits suggest
that the neurons and the interactions between these neurons, should approximately fulfill the

following criteria in order for circuits of two neurons to exhibit bistable output activity
(Fig. 2):
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Figure 2. Idealized bistable behavior for circuits of two neurons connected by slow, reciprocal connections. (A)
Schematic of the circuit. The connections have strength T and a decay-time 7;. The current injected into each
cell consists of two components, a constant bias current Iy and a transient component AL (B} The dynamic
properties of a circuit with reciprocal, inhibitory connections. The input-output relation for each neuron is taken
to be a saturating non-linear function characterized by a threshold Ir. The width was ignored in our analysis. A
transition between states ON/OFF and OFF/ON is elicited by a current-pulse AL (C) The dynamic properties
of a circuit with reciprocal, excitatory connections. A transition from the quiescent state to the active state is
elicited by a current-pulse. Adapted from Kleinfeld et al. (1990a).

1. To clearly identify the output states, the activity of the neurons must have discernible
quiescent and active levels; we refer to these levels as 'OFF’ and 'ON', respectively.
Thus the rate of firing of the neurons must change in a non-linear manner as a function

of the input current (Fig. 2B).

2. To provide a feedback pathway to stabilize the two output states, the neurons are
connected by reciprocal connections of the same sign (Fig. 2A). Thus there are two
possible circuits, one has reciprocal inhibitory connections and the other has reciprocal

excitatory connections.

3. To provide the temporal integration that allows each neuron to maintain a constant
level of activity, the duration of the postsynaptic response is long compared with the
period between action potentials in the presynaptic cell. Note that temporal integration

in our small circuits plays the role of population averaging in large circuits.
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The input to each neuron contains contributions from both its presynaptic partner and

external sources. A dynamical system that realizes the above features is described by

t
dt’
Vit +75)= O[Ty [ ?Vz(f') + I — Iy

t—1g

t

dt’
O|Ty [ —Vi(t) + Inp — Ire (1]
t—1 L

Va(t +75)

where the outputs V| and V, vary between O (quiescent) and 1 (maximally firing), T}, and
Ty, are the values of the synaptic strength, taken as the value of the current that enters the
postsynaptic cell when the presynaptic cell is firing at its steady-state rate, Iy and Iy, are
external bias currents and Ip; and Iy, are the intrinsic threshold levels of the neuron. The

step function, ©(z), is defined by

The time 7g corresponds to the period between action potentials and the 77 corresponds to the

time-constant of the synaptic integration. In the present study r; >> rg.

The steady-state solutions of the above system (Egs. 1,2), in which neurons are treated

as threshold elements, correspond to the stable states of the system. They are given by

V=0 [le Vo + Iy — ITI]
Vy,=0© [T21 Vi+ lpg — IT2] 3]

We consider first the case of a circuit with reciprocal inhibitory connections. There are four
possible output states: OFF /OFF, ON/OFF, OFF/ON and ON/ON. The output of a circuit
may be stable in only one state, i.e., monostable, or it may be stable in both the states
ON/OFF and OFF/ON, i.c., bistable (Fig. 3). The ranges of bias currents for which bistable
behavior takes is given by It < I < Ity — Typ and Iy < Iy < Irg — Ty (Fig. 2B). A
transition between the stable states is initiated by injecting a pulse of current, Iy — Iy + AJ,
into the quiescent neuron (cell 1 in Fig. 2B). Similarly, bistable output can occur in the
circuit with reciprocal excitation when the bias currents satisfy Ip; — Ty < Ig; < Ip; and

Ity — Tgy < Igp < Ipo (Fig. 2C). Bistable output in both circuits results from the non-linear
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Figure 3. Analysis of an idealized circuit of two neurons that are connected by reciprocal inhibitory connections.
The stable output states are shown as a function of the relative bias current into each cell, Iy — Ir; and
Iy — I7o respectively. The synaptic input from cell 2 to cell 1 is Ty; and the input from cell 1 to cell 2 is Ty;.
When the bias currents lie within the bistable region the output of the circuit is stable in both the state ON/OFF
and the state OFF/ON. A transient, external perturbation to the circuit can cause a transition between these
states. Adapted from Kleinfeld et al. (1990a).

firing characteristics of each neuron and the feedback between the two neurons. The

simplicity of our circuits allows aspects of the expected behavior to be tested experimentally.

In vitro connectivity. Our goal was to test the above ideas in a biological circuit. We
adopted a new strategy and attempted to construect the desired circuits in wvitro. The
pioneering work of Nicholls and Ready (1979) showed that identified neurons could be isolated
from invertebrate ganglia, leech ganglia in their case, and that these neurons reestablished
connections in vitro. We used identified neurons from the mollusc Aplysia to form our

circuits, following the techniques of Schacher and Proshansky (1983). A typical co-culture is
shown in Fig. 4.

An important finding of our work (Kleinfeld et el, 1990b) was that identified Aplysia
neurons can form strong, stereotyped specific connections in vitro that are different from

those in the intact ganglion. An example involving the connections formed by a particularly

well characterized interneuron, L10, to a select group of in vivo followers and non-followers is
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Figure 4. A co-culture of L7 and L12 neurons. The extensive array of fine neuronal processes corresponds to
regenerated outgrowth. Photographed under dark field illumination 3 d after the initial plating. The scale bar
corresponds to 1 mm.

shown in Fig. 5. Thus, while reciprocal connections of the same sign are rarely found in vivo
(Koester and Alevizos, 1989), our studies allowed us to identify pairs of neurons that formed

reciprocal connections tn vitro.

Co-cultures of L10 and left upper quadrant (LUQ) neurons formed relatively robust
reciprocal, inhibitory connections. Following a burst of action potentials induced in L10, we
observed an inhibitory post-synaptic potential in LUQ that decayed with a time-constant of
7, ~ 10 s (Fig. 6A). An IPSP with similar response properties was observed in L10 following a
burst of action potentials in L10 (Fig. A). A second co-culture consisted of L7 and L12
neurons and formed reciprocal, excitatory connections (Fig. 6B). These two co-cultures were
selected as candidates for circuits with possible bistable outputs. We first describe the firing
properties of the individual neurons and the steady-state synaptic response between pairs of

neurons. We then discuss the dynamic properties of these circuits.

Neuronal properties. The input-output properties of the neurons were measured to
assess conditions under which they behaved like threshold elements. Our results will be

illustrated for the case of L10. The response of L10 to a succession of increasingly strong steps
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Figure 6. Schematic of the connections formed by L10 to selected in vivo followers and non-followers (Kandel et
al., 1967; Wachtel & Kandel, 1971). Reproduced from Kleinfeld et al. (1990b).
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Figure 6. The reciprocal interactions between the pairs of neurons used to construct each circuit. (A) The
interactions between L10 and LUQ. These cells formed reciprocal inhibitory connections. The hyperpolarization
was measured in response to a train of action potentials generated in the presynaptic cell. (B) The interactions
between neurons L7 and L12. These cells formed reciprocal excitatory connections. The depolarization was
measured in response to a train of action potentials generated in the presynaptic cell. The initial spike in the
records results from electrotonic coupling between the cells. Reproduced from Kleinfeld et al. (1990a).
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of intracellularly injected depolarizing current is shown in Fig. 7A. The cruecial feature is that
an increase in the amplitude of the current by 0.01 nA could change the output of L10 from
quiescence to one of continuous firing. The firing rate increased relatively little when the
amplitude of the current steps was further increased; compare the traces for 0.10 nA and
0.30 nA in Fig. 7A. The complete input-output relation for L10, measured under quasi-static
conditions, is shown in Fig. 7B. Although the firing of L10 showed adaptation, there was an

abrupt change from quiescence to firing at all times (Fig. 7B).

The input-output relations for LUQ, L7 and L12 were roughly similar to that for L10.
The neurons exhibited a sharp transition from the 'OFF’ to an 'ON’ level for input currents
as small as 0.01 nA and thus behaved as threshold elements on this scale. We note that the
input-output relation for L12 only was significantly altered by continuous activity, a point we

will return to later.

The stability of the output activity will depend on there being a sufficiently strong
synaptic currents under steady-state conditions. These currents must be capable of driving
the postsynaptic cell between quiescence and firing in order to supply the feedback necessary
to stabilize the two output states. This implies that the input must be large compared to the
minimum current required to drive a neuron between its ON and OFF levels. The current
that flows in the postsynaptic neuron as a results of activity in the presynaptic neuron is
defined as the synaptic strength. Thus the magnitudes of the strengths Tjy and T9; must
satisfy | T1| >> 0.01 nA and | Ty; | >> 0.01 nA, respectively.

We consider first the connections between LUQ and L10. The L10 fires at ~ 2 spikes/s
when it is biased just above its threshold values. A measure of the postsynaptic response in
an LUQ biased near its threshold value, with L10 firing at approximately 2 spikes/s, sets a
lower bound on the magnitude of the connection strength. A similar argument holds for the

postsynaptic response in L10 with LUQ firing near its minimum rate of ~ 0.5 spikes/s.
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Figure 7. The input-output relation observed for L10. (A) The firing behavior observed with current-pulses,
Al of increasing amplitude. Note the change from quiescence to firing that occurs when the current is increased
by only 0.01 nA, ie., from 0.09 nA to 0.10 nA. (B) The instantaneous firing rate as a function of the input
current. The threshold current, Iy, corresponded to the minimum current for which the neuron fired
continuously. Open circles (O ) correspond to an average over the 2nd through 6th interspike interval, i.e., the
initial rate, and the filled circles (o) correspond to an average over the 15tk through 20tk interspike interval, i.e.,
the steady-state rate; see part (A). Reproduced from Kleinfeld et al. {1990a).
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The hyperpolarization observed in LUQ in response to a sustained train of action
potentials in L10 is shown in Fig. 8A. For rates in the range v = 2 to 3 spikes/s, the average
steady-state connection strength for the L10 to LUQ connection was Ty; == —0.1 nA, found
by taking the ratio of the IPSP to the measured resistance of the cell. Here, as in general, the
magnitude of the hyperpolarization remained essentially constant over the time-course of the
measurements. However, the specific value of the connection strength from L10 to LUQ
depended roughly linearly on the rate of firing of the presynaptic L10. In contrast, the
strength of the connection from LUQ to L10 was essentially independent of the rate of firing
of the presynaptic LUQ, with T3 == - 0.1 nA (Fig. 8B). The requirement that the magnitude
of synaptic strength had a value greater than 0.01 nA, thus allowing transitions to occur, was

fulfilled for both inhibitory connections.

A similar result was found for the L7 to L12 and L12 to L7 connections in the excitatory
circuit, for which Tjp ~ T9; ~ +0.05 nA. However, after sustained activity in these cells the

strength of the L12 to L7 connection decreased.
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Figure 8. The steady-state interaction between L10 and LUQ neurons biased near their threshold values. (A)
The inhibitory response measured in an LUQ for different rates of firing in L10. Action potentials were elicited in
L10 by current-pulses. The minimum firing rate of L10 in our circuits was typically v = 2 spikes/s, for which the
hyperpolarization in this cell corresponded to a value Tj; o —0.2 nA. (B) The inhibitory response measured in
L10 in response to different rates of firing in LUQ. The firing rate of the LUQs in our circuits were typically
v = 0.3 spikes/s to v = 0.5 spikes/s, for which the hyperpolarization in L10 corresponded to a value
Ty =~ —0.1 nA. The spikes in the data record were caused by weak electrotonic coupling. Reproduced from
Kleinfeld et al. (1990a).
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The stability of the output states also depends upon temporal integration of the
synaptic input. This implies that the duration of the postsynaptic response must be long
compared to the time between action potentials in the presynaptic cell. The decay-time of the
synaptic input for all connections was 7, ~ 10s (Figs. 6A and 6B). This time was greater

than the longest period between action potentials, v~! < 2s, fulfilling this condition.

Variations in firing rates on the time-scale of 7 should not affect the stability of the circuits.

To summarize, we utilized three criteria as guides for the construction of circuits that
should exhibit bistable output. These were (1) neurons with a non-linear input-output
relation, (2) reciprocal connections of the same sign, and (3) integration over past activity by
the relatively long decay-time of the interactions. All three criteria could be satisfied by co-
cultures of L10 and LUQ neurons. Co-cultures of L7 and L12 neurons satisfied these criteria

only for the first ~ 100 s following the onset of activity.

Circuit dynamics: Reciprocal inhibition. The dynamic behavior of the circuits with
reciprocal inhibition was probed in co-cultures of L10 and LUQ. The dynamic response of one
such circuit is shown in Fig. 9. We first set the proper bias currents by: (1) Adjusting the
currents to maintain the neurons at their quiescent level. (2) Increasing the current to L10 to
a value 0.1 nA above its threshold current. (3) Increasing the current to the LUQ to values
< 0.1 nA below the value at which the neurons began to fire. The circuit remained in the
state with L10 active and the LUQ quiescent until a current-pulse was simultaneously injected
into the LUQ (Fig. 9A). The circuit remained in the new state until a pulse was injected into

L10 (Fig. 9A). This pulse caused the output to return to the original state.
The data in Fig. 9 illustrates many of the features of these circuits.

1. Both the state ON/OFF, with LUQ active and L10 quiescent, and the companion state
OFF/ON were stable for times that were very long compared to the synaptic integration
time (Fig. 9A and 9B).

2. The alternation between states could be repeated without obvious fatigue of the output
(Fig. 9C).

3. The output states were stable when one of the cells fired erratically (Fig. 9A). This
shows that the temporal integration of the synaptic input made the output of the
circuits relatively insensitive to fluctuations in the firing rate that are fast compared to
71, (Fig. 6).

4. Relatively few action potentials were required to induce transitions between the two
output states (Fig. 9D). This shows that transitions can be induced by relatively low

firing rates.

In the above discussion of bistable output, the bias currents were adjusted so that the

output of each neuron was near its optimal sensitivity to changes in its synaptic inputs. We
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Figure 9. Bistable behavior in an inhibitory circuit consisting of co-cultured LUQ and L10 neurons. Injection of
a current pulse is indicated by a 'P’. (A) Demonstration of the long-term stability, ~ 500s, of the state
OFF/ON. Note the relatively erratic firing of LUQ. The fluctuations are faster than the integration period
provided by the decay time, 7, of the connection. (B) Demonstration of the long-term stability, ~ 500 s, of the
state ON/OFF. (C) The basic bistable response of the circuit. Note that relatively weak current-pulses were
used to cause transitions between the states ON/OFF and OFF/ON. (D) The effectiveness of the duration of the
current-pulse in initiating a transition between states. A pulse to LUQ that elicited 11 action potentials, but not
one that elicited 5 action potentials, caused a transition. A pulse to L10 that elicited 4 action potentials, but not
pulses that elicited either 2 or 3 action potentials, caused a transition. Reproduced from Kleinfeld et al. (1990a).

next discuss the stability of the output as a function of the bias levels of each cell.

An example of data taken at different levels of bias current is shown in Fig. 10A.
Initially the bias currents were adjusted so that LUQ was active and L.10 was quiescent. We
probed the stability by injecting a strong current-pulse into L10. The LUQ was briefly
inhibited but resumed firing. The output was judged monostable in the state ON/OFF for

this set of bias currents. We next increased the level of the bias current to L10 only and again
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Figure 10. Analysis on the LUQ/L10 inhibitory circuit as a function of the bias currents. (A) Example of
monostable output and bistable outputs. The bias currents were first adjusted to [y, = 0.10 nA and
Iz = 0.30 nA, for which LUQ was active and L10 quiescent. Pulsing L10 momentarily inhibited LUQ, but the
original activity soon recovered and thus the output was monostable. The bias current to L10 only was changed
to Iy = 0.35 nA. Pulsing L10 now elicited a transition to the state OFF/ON. Subsequently pulsing LUQ caused
a transition back to the previous state. The output was thus bistable. {B) Compilation of the results of the
analysis. The data labeled A’ corresponds to that in part (A). Note that there was a small range of bias currents
for which the output was bistable in the states ON/OFF and OFF/ON and that the relative bias currents that
separated the bistable region from monostable regions, and separated different monostable regions, agreed with
theory (Fig. 9). (C) The relative connection strengths between the L10 and LUQ neurons. The inhibitory
responses were elicited by a train of action potentials in the presynaptic cell. The connection from L10 to LUQ is
roughly twice the strength of the connection from LUQ to L10. This is consistent with a bistable region that was
nearly twice as large for currents injected into the LUQ as for currents injected into L10, as observed in part (B).
Reproduced from Kleinfeld et al. (1990a).
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probed the output. Injection of a pulse into L10 now caused a transition to the state
OFF/ON. We observed that the output returned to its original state when we subsequently
injected a current-pulse into LUQ. The output was judged bistable for this set of bias
currents. This data shows how a change in the bias current to a single cell changed the

output behavior of the circuit from monostability to bistability.

The compiled results for all bias levels with a particular L10/LUQ co-culture are shown
in Fig. 10B. We used sets of currents that were separated in value by 0.05 nA in acquiring

this data. There are three noteworthy features:

1. There was a range of bias currents for which the output was stable in both the state
ON/OFF and the state OFF/ON, i.¢., bistable (®; Fig. 10B). The order of magnitude of
this range was ~ 0.1 nA, which corresponds to the magnitude of the steady-state value

of the synaptic inputs.

2. The range of bias currents for which bistable output occurred was about twice as large
for currents injected into L10 as for currents injected into LUQ. From theory (Fig. 3),
this ratio is related to the synaptic strengths by (Io;—It1)/(Toe—IT2) = T12/T21 ~ 2.
The observed connection strengths for these cells are consistent with the expected value
(Fig. 10C).

3. The relative bias currents that separated the region of bistable output from the
monostable regions, and separated different monostable regions, were in good agreement
with the predictions of a simple model (¢f. Figs. 3 and 10B).

In summary, the properties of this circuits were consistent with the behavior predicted from

theoretical arguments for bistability.

Circuit dynamics: Reciprocal excitation. We now consider the output properties of
co-cultures of L7 and L12. These neurons form slow, reciprocal excitatory interactions
(Fig. 6B) and are expected to produce a distinct, bistable output (Fig. 2C). Thus the behavior
of the excitatory circuits provides information that is complementary to that obtained with

the inhibitory circuits.

The basic response of the excitatory system is shown in Fig. 11A. We first set the bias
currents just below the threshold values for the cells. The neuronal output remained
quiescent. The subsequent injection of a current-pulse into L7 caused L7 to fire immediately
and L12 to fire 1% s later. The latter delay coincides with the rise-time of the depolarization
(Fig. 8B). Sustained activity in both cells was observed following cessation of the pulse. The
brief inactivity of L7 following termination of the pulse was caused by a hyperpolarizing
afterpotential. The change in the output of the circuit from the quiescent to the active state
is in agreement with the model (Fig. 2C). A similar transition was observed when the pulse
was injected into L12, rather than L7, in accord with the approximate symmetry of the

connections (see below; trial 6 in Fig. 11B).
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Figure 11. The behavior of an excitatory circuit consisting of co-cultured L7 and L12 neurons. (A) The basic
response. The bias currents were set ~ 0.05 nA below their threshold values for both neurons. The transition
from the quiescent to the active state was induced by injecting a brief current-pulse into L7. (B) The behavior as
a function of the bias current to each neuron. The four data records are taken from a set of consecutive trials.
The value of the bias current was increased in 0.1 nA steps between trials; the arrows indicate the time of the
increase. Current-pulses were injected into L12 at 120 s intervals. The partial synchrony in the firing of the
neurons results from the electrotonic coupling. Reproduced from Kleinfeld et al. (1990a).

The duration of the active state was limited by at least two mechanisms. First, the
strength of the L12 to L7 connection appreciably decreased over the time-course of the active
output, as mentioned above. Secondly, the value of the threshold current increased over the

same period. These effects can cause a circuit in its active state to relax to its quiescent state.

The limited duration of the state ON/ON in a bistable L7/L12 circuit preventing us
from measuring the output behavior for an extensive range of bias currents. However we
could observe the output over a restricted range, in which the response of the circuit was
probed in a series of measurements using increasing values of bias current (Fig. 11B). A
relatively long current-pulse was injected into L12 to insure that the postsynaptic response in
L7 consistently reached its maximum amplitude. At low values of bias current the circuit
remained in the quiescent state following a pulse (trial 1, Fig. 11B). As the bias currents were
increased, in steps of 0.1 nA, we observed the beginnings of sustained activity following a
pulse. For the response in trial 3 (Fig. 11B) the model suggests that the bias current of L7 is
properly set but that of L12 is too low. We thus increased the bias level of L12. The circuit
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exhibited sustained firing in response to a pulse (trial 5; Fig. 11B), in agreement with the
model. The duration of the active output was long compared with the decay-time of the

connections but decreased with successive trials (c.f. trials 5 and 6, Fig. 11B).

Interlude

Our analysis of the output behavior and stability of the circuits with reciprocal
connections used an extremely simple model. Neurons were taken as threshold elements and
details of the synaptic interactions, such as the non-linear behavior of the LUQ to L10
connection, were ignored. The model provided an accurate account of the basic bistable
output behavior and details of the stability of the output for the circuit with reciprocal
inhibitory connections. The circuit with reciprocal excitatory contained time-dependent
neuronal input-output relations and synaptic interactions, yet the model accounted for its

behavior for many synaptic time-constants.

Our results with the #n vitro circuits suggests that simplified models may be appropriate
for understanding the dynamics of in vivo circuits. We next discuss the analysis of the circuit

that controls the muscles involved in escape swimming in the molluse Tritonta.

Escape Swimming in Tritonia.

Tritonia diomedea is a mollusc that exhibits a pattern of undulatory flexions as an
escape mechanism from predatory starfish (Willows, 1967). The Tritonta first retracts from
the site of contact with the starfish and then swims by alternate dorsal and ventral flexions of

its body (Fig. 12). The swim flexions last for two to twenty cycles.

Studies on the neural control of the escape swim response began with the work of
Willows (1967) and Willows and Hoyle (1969). The neural elements that form the circuit that
controls the swim rhythm, referred to as a central pattern generator (CPG), have been
elucidated by the work of Getting (1981; 1983a; 1983b; Getting & Dekin, 1085).

Figure 12. Cartoon of the escape swimming response in Tritonia (clockwise from upper left hand corner). The
Tritonia withdraws from an attacking starfish, extends its body, and exercises ventral-dorsal urrdulatory motions
to gain hydrodynamic lift. Adapted from Willows (1967).



92 D. Kleinfeld, H. J. Chiel, and H. Sompolinsky

The CPG in Tritonia consists of four neural groups, denoted by VSI—A, VSI-B, C2
and DSI. The VSI neurons are the ventral swim interneurons, C2 is a cerebral neuron and
DSI represents the dorsal swim interneurons. The observed output pattern consists of
bursting output from VSI—A and VSI—B neurons alternating with bursts from the C2 and
DSI neurons; Fig. 13. The time interval between consecutive action potentials within a
bursting state is ~0.01 s to 0.1 s and the duration of each state is, on average, approximately
5s.

Three observations (Getting 1981; 1983b) were of primary importance in motivating our

theoretical study of this circuit.

1. The CPG in Tritonie functions without a pacemaker cell, ¢.e., a single neuron whose
firing properties determines the output period of the network. This implies that the

rhythmic output is a collective property of the network.

2. The output appears an an alternation between two well defined output states, one with
C2 and the DSI firing and VSI-A and VSI-B quiescent, and vice versa. This suggests
that the behavior of this circuit can be understood in terms of a model whose output can

alternate between two states.

3. The synaptic connections have components that act on two different time-scales. For

example, the synaptic input to C2 from DSI shows a rapid excitatory response followed
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H (&)

TIME

Figure 13. The output activity simultaneously measured from a C2, DSI, VSI— A and VSI— B neuron in an
isolated brain preparation from Tritonia. These neurons comprise the CPG that controls the escape swim
sequence. Their output corresponds to V;(t), Vy(t), Va(t) and V,(t), respectively, in the analysis presented in the
text. The arrow indicates the initiation of the sequence. Note that in the present work we are concerned only
with the oscillatory behavior of the CPG, and not with the gradual dephasing that leads to its turning off.
Vertical bar: 50 mV for €'2, DS and VSI~ B and 25 mV for VST—A. Adapted from Getting (1983b).
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by a much slower inhibitory response; Fig. 14.

The observed synaptic response in Tritonia appears to be analogous to the form of the
interaction in a Hopfield-like neural network for the generation of temporal patterns
(Sompolinsky & Kanter, 1988; Kleinfeld, 1986). We will analyze the CPG in Tritonia within
the framework of this model. We first review the model, focusing on two issues: (1) The rules
for forming synaptic connections in terms of the desired output states. (2) Simplified
dynamics of the networks. A full description of the correspondence between the model and
the CPG in Tritonia is given elsewhere (Kleinfeld & Sompolinsky, 1988; 1989).

- _1 Vq(f) R Vz(f)A
»> > I >
cz2 DSI

OBSERVED RESPONSE

TIME

Figure 14. An example of the synaptic interaction between two neurons in the CPG in Tritonsa. Shown is the
pre-synaptic activity measured in the C2 neuron, v,(¢), and the post-synaptic response measured in a DSl neuron,
vy(t), as the result of a short pulse of current injected into 2. The measurement was performed under
conditions which insured that only mono-synaptic connections contributed to the observation. The observed
response applies to two out of the three DSI neurons (DSIB and DSIC); the other DSI neuron (DSIA) exhibits only
a slow response. The area under the initial, positive going response corresponds roughly to T$; that under the
slowly decaying response corresponds to Th. The time dependence of the slow decay corresponds to the time
dependence of the slow synaptic response function, w(t). Vertical bar: 40 mV for €2 and 2 mV for DSI. Adapted
from Getting (1981).

Network model: Connectivity. Our network consists of highly interconnected model
neurons whose essential feature is a non-linear relation between their inputs and their firing
rate. The output patterns are encoded in the strength of the synaptic connections between

pairs of neurons. Rhythmic output emerges as a collective property of the network.

The output of each neuron, V;(t), varies between zero (quiescent) and unity (maximum
firing rate). The state of the network is specified by the output activity of all of its neurons
and represented by V(t)= {V;(t)}/L, where N is the number of neurons. A pattern is
defined as a temporal sequence of meta-stable states, denoted by V# = {VE},. A cyclic

pattern of length r consists of the sequence

'—>V1—>V2-——>V3—>"'—>V'_1—>V'—>V1—+--~
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We define the synaptic connection between the j-th pre-synaptic neuron and the +th
post-synaptic neuron as Tj;. A central feature of the model is that each connection Tj; is
functionally separated into two components, denoted Tg- and T,l,‘ The two components are
hypothesised to have different characteristic response times. The synaptic connections T;? act
on the shorter of the two time-scales. This time-scale, g, determines the time required for the
network to settle in each of the stable states. The synaptic connections denoted T,%- act on
the longer of the two times. This time-scale, 71 (1, >> 5), sets the time for the onset of the
transitions between consecutive states in the pattern. Thus the duration of an individual
state in a pattern will be ~7;, while the transitions between states occurs on the faster

time-scale of rg.

The role of the connection strengths T;‘(Ji is to stabilize the network until a transition to
the next meta-state occurs. This is achieved by defining the Ti; in terms of a Hebb-like

learning rule ¢.e.,

TH= S @VE—1)@VE-1), i#; 4]
Ja=1

where r is the length of the pattern and T = 0. The variable (2V¥# — 1) has a value of
either -1 (quiescent) or +1 {maximally firing) so that inhibitory as well as excitatory synapses

are formed.

The role of the connection strengths T,I; is to induce transitions from the u-th meta-
stable state to the (u + 1)-th state. We define

—1
Th=)'% @VIY = 1)@VE—1), i%j A >0 51
p=1

ThE=0,V'=V!and \is a scaling parameter for the transition strength that determines
the period of the rhythmic output.

The rules we described for specifying the synaptic connections assume the existence of
connections between all pairs of neurons. Biological networks may intrinsically contain a
much smaller set of connections. The performance of the network model is only marginally
affected when a substantial fraction of the fast components of the synaptic connections (Tg)
are eliminated at random. The main effect of eliminating a fraction of these components is to
decrease the maximum number of states that can be used to construct an output pattern.
Eliminating the slow components of the synaptic connections (T,[;) has a negligible effect on
this number. However, random elimination of a fraction of the T,-[; synapses will decrease the

ability of the network to make a transition between the stable states. This decrease can be

offset by a compensating increase in the value of A. Thus the value of X is bounded by
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<Strength of the T,l]‘- synapses_>
<Strength of the T,’? synapses>

(8]

The value of A\ will determine the output period of the network. This relation will allow us to

link the observed synaptic strengths in Tritonia with the measured output period.

Network model: Dynamics. The integrated synaptic input to each model neuron is
assumed to be a linear summation of the outputs of the pre-synaptic neurons. An example of
the time-course of a post-synaptic response to a short pre-synaptic stimulus is illustrated in

Fig. 15A. The dynamic evolution of the network is described by a set of circuit equations

e 29 4w

N fe o)
LE TSV + Th [ @ Vit — e [+ 5 )
J=1 0

where u;(t) is the net input to the i-th neuron, I; represents an external input (Fig. 15B), the
synaptic response function w(t) for the slow components is a non-negative function that is
normalized to unity and characterized by a mean time-constant 7. The output of a model

neuron, Vi(t), is related to its net input, u;(t), by a non-linear gain function

vi(t) = o (wtt) - %) 8]

where as the threshold level of the neuron has, for simplicity in the present discussion, been
taken as %. The dynamic features of the network do not depend on the details of the gain

function; Fig. 15C illustrates an appropriate form.

The analysis of the dynamic properties of the network is greatly simplified when the
neurons are approximated by threshold elements, i.e., the neurons are either quiescent or fully
active and the slow synaptic response function is approximated as a pure time delay, e,

w(t) = (1/77)8(t — 7z). In this limit the dynamics are governed by a set of update rules

£ (5 ev0 -1+ T ere-w - 1) 9
j=1

V,'(t+ Ts)= 9[

where O(z) is defined by Eq. 2.

We illustrate the temporal output expected from the model defined by Egq. 9 by
simulating a toy network. The network contains 7 neurons and 3 stable states, with

connections formed using the Hebb-like rules (Egs. 4,6). Starting from a random initial
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Figure 15. An associative network model for the generation of rhythmic patterns. (A) Illustration of a two-
component synaptic connection from the j-th to the i-th neuron. The components are resolved following a short
pulse of activity in the pre-synaptic neuron. The area under the fast synaptic response is equal to T,f» taken to
be excitatory in this example. The area under the slow synaptic response is equal to T,-’;-, taken to be inhibitory in
this example. The ratio of these areas, averaged over all pairs of synapses, equals the transition strength \. The
time-course of the slow-synaptic response corresponds to the response function w{t); it has a time-constant of L.
(B) Schematic representation of a saturating gain function for a neuron. This function relates the output, or
firing frequency of a neuron, V((t), to the value of the net input, {t), and the mean operating level, §;. We took
6; = % (Eq. 8) for simplicity in our analysis. (C) Schematic representation of the circuit diagram for the model
network. Neurons are represented by saturating amplifiers with a charging time of RC, where R represents the
net input resistance of the neuron. Synaptic connections between each pair of neurons are represented by
conductances proportional to T;? (fast synaptic components) or T,-I,‘- (slow synaptic components) Reproduced from
Kleinfeld and Sompolinsky (1988).
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condition, the network converged toward a stable state and subsequently made near-periodic

transitions between all three states. The resulting firing pattern is illustrated in Fig. 16.

We are now ready to draw a connection between our model and Gettings (1981; 1983b)

measurements on the central pattern generator controlling the swim rhythm in Tritonia.

Correspondence between the model and Tritonia. The focus of our analysis is to
determine if the properties of the CPG in Tritonia support the mechanism we propose for

generating patterns. We ask:

1. Are the observed synaptic strengths consistent with those calculated from the form of

the observed output states?

2. Are the simple update rules [Eq. 9] sufficient to demonstrate the emergence of an

oscillatory output that qualitatively resembles the observed pattern?

3. Is the period of the observed output pattern accounted for in terms of the magnitude

and form of the observed slow synaptic response?

The observed output sequences (Fig. 13) will be approximated by an oscillation between

astate V* and its antiphase V™ = (1 — V), where

OUTPUT OF NEURON i

TIME

Figure 18. Simulation of a network containing 7 neurons and 3 output states that generates cyclic sequences.
The output states are V1 = (0011010 )T, V2 = ( 1010100 )7 and V* = ( 1100010 7. Time is denoted in units of
r, = 6'rs. Adapted from Kleinfeld (1986).
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C2 active +1 0

. DSI active +1 _ 0
vt = VSI— A quiescent |~ 0 and VT = +1
VSI— B quiescent 0 +1

S
171
and the long-term connection strengths, T,'IJ’-, were deduced from the outputs V* and V~

These states are used as the stable in our model. The short-term connection strengths T

using the Hebb-like rules (Egs. 4,5). For example, the value of the predicted fast, stabilizing

connection from DSI to C2 is

TS = (2VF — 1)@V] —1)= +1.

The value of the predicted slow, transition causing connection from DSI to C2 is

TH =X (2Vy — 1)@Vi —1)= =)

Note that the rules allow one to predict all possible connections. Only a subset of these

connections need be present for the model to function, as discussed above.

How do the predicted synaptic strengths compare with the observed values? The
strength of a synaptic connection is proportional to the integral, with respect to time, of the
conductance changes (o(t)) induced in the post-synaptic neuron by a short pulse of activity in
the pre-synaptic neuron. These integrals were estimated from measurements (Fig. 14) of the
potentials (V,,(t)) induced in the post-synaptic neuron by a short burst of action potentials

in the pre-synaptic neuron.

We made a crude classification of the observed synaptic strengths in Tritonia based on
the pair-wise measurements of Getting (1981; 1983b) and Getting’s detailed analysis (1989).
The observed response was classified as either a fast component, T,-‘j-, or a slow component,

TL

i;» according to the time-scale of the response.

In our simple analysis we need only consider the average magnitude of the fast synaptic
components relative to that of the slow components, i.e., \, in addition to the sign of the
measured response. For example, the sign of the fast components of the observed synaptic

connection from C2 to DSI (Fig. 14) was estimated by

[>2] 0
T$ = sign fdt o5(t) | = sign Jdt Vi (t) | = +1.
0 0
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Similarly, the slow component of this connection is

o

Th = X -sign| [dt o(t) | = X\ -sign| [dt VE,(t) |= —X.
0 0

The determination of A\ contains a large uncertainty, in part because of the difficulty in

separating the fast and slow contributions to the measured synaptic response. We estimate

X =~ 5 to 10.

The signs of the experimentally observed synaptic strengths match those of the
theoretically predicted strengths (Fig. 17). Three of the possible twelve synaptic connections
show both a short-term and a long-term response. Connections (4,7) = (3,1) and (¢,7) = (3,2)
both show short-term inhibition followed by a long-term excitation, while connection

(1,7) = (2,1) shows short-term excitation followed by long-term inhibition.

The observed connections in Tritonia suggest that Hebb-like rules are a useful
prescription for specifying synaptic connectivity. The form of these connections further
illustrates how the sign of the net synaptic input to a neuron can change over time. Lastly,
the relatively larger number of T,-l]’» connections that are absent in Tritonta in comparison with

the T,’?- components is consistent with the constraint on A (Eq. 8)

FAST COMPONENTS SLOW COMPONENTS

Figure 17. The synaptic strengths for Tritonia. Circles represent excitatory connections and rectangles
represent inhibitory connections. All theoretically possible connections, calculated for the observed output states
in Tritonia using the Hebb-like rules in the model, are shown. Solid lines and symbols indicate those connections
3
7

observed in Tritonta. Fast components refer to the T; while slow components refer to the T,I_;
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‘We now examine whether the observed network parameters in Tritonta indeed give rise
to rhythmic output in the network model. We begin our analysis with the simplified model
that accents the role of the observed synaptic connections in generating stable oscillations
(Eq. 8). Immediately after the network has stabilized in a new state V¥, the output of the +
th neuron is V;(t) = Vi, but the delayed output is V;(t—r.) = V7. The output of the &th

neuron after the next update is

-4
Viit+s)= O ¥ T§@VF —1) + ThH(vy — 1)
=
041 0 -1)[+1 0 0 0 o][-1
ol |1 0 -1 -1+ -1 0 o0 ofl|-1
= -1 -1 0 +1|f=1] *M+1 +1 o of|+1
| o-1 o of |- +1 0o o ofl+1
2 +1
3+ ) +1
—_ — = +
=0 | S nll=1ol=v# for x>0.
—1—2 0

Thus the output of the network is stable on the time-scale of r5. After the network has
remained in the state V't for a time 77, the delayed output changes to Vi(t—r,) = Vi(t)=
V. The output of the i-th neuron after the next update is

[ 4
Vi{t+r+rs)= O o Ti@evy —1) + TE@vi -1)
[ j=1
2 +1
3— X 0
=0 —s+2l|= |41 for X >3.
-1+ X\ +1

The network is now in a mixed, unstable state. Using this new value for the current state in

the update procedure gives

4
Vi(t+r+2r5) = © | 2T @Vi(t+m+7s) — 1)+ T (2vi — 1)
J=1

-2 0
—1-—2X 0
1+2017 |+1
14X +1

= V.
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The network has now completed a transition from the state V' to the state V~. It will
remain in this state for a time ¢o == 77, after which the cycle will repeat itself. The output of
the network will oscillate only if the transition strength is A > 3. This value is consistent
with the observed value of A = 5 to 10. Our analysis demonstrates that, within the
framework of our model, even a small network can function with the elimination of many of

its theoretically possible connections.

The simplified analysis presented above suggests that the observed connection strengths
can give rise to rhythmic output in the model network. We examined the steady-state
behavior of the network model for Tritonia using analog dynamics (Eq. 6) and an appropriate
synaptic response function that is a smooth function of time. The equivalent electrical circuit
is shown in Fig. 18. Stable oscillations of the form described by the previous simplified
analysis were observed. The output activity for the transition strength A = 10 is shown in
Fig. 19.

The period observed for the output of the CPG in Tritonia is 2ty = 7 to 10 s (Fig. 13),
while the time-constant for the slow synaptic response lies in the range 7, = 3t0 6s (7, =~ 6s
for the data shown in Fig. 14). Is this value for the period accounted for by the model? As we
discussed earlier, the predicted value for ¢, depends on the values of 7;, and A and on the form
of the response function w(t). We used the analog equations for the network (see above) and

calculated the dependence of 2¢g on X (Fig. 20). The lower estimate, which is in accord with

\,{1 \1{1 uy(1) v, (1)

i{chz

Nt \@ NN ua (VN Va(t)
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Figure 18. Schematic representation of the equivalent circuit for the analog network model describing the CPG
in Tritonia. The synaptic strengths contained in this circuit correspond to the observed connections Tg and T,l;
Adapted from Kleinfeld and Sompolinsky {1988).
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SIMULATED STEADY - STATE
OUTPUT ACTIVITY

TIME

Figure 19. Simulated output activity from the analog network model describing the CPG in Tritonia. The
arrows indicates the start of the simulated output from the initial states V(t<0)= V(t<0)= (0111)%¥. The

network equations were simulated using the observed values of Tg and T,’; Reproduced from Kleinfeld and
Sompolinsky (1988).
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Figure 20. The output period, 2¢y, of the analog network model for Tritonia as a function of the average
transition strength X. A period of 2¢5 =~ 7s to 10s corresponds to the period observed in Tritonia. The solid line
delimits the range of values for X estimated from the measured connection strengths. For the value X = 10, the

period deduced from the model is in accord with the observed period. Reproduced from Kleinfeld and
Sompolinsky {1989).
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the experimental value, corresponds to A = 10.

How is the output of the network in Tritonia affected by a change in bias currents? We
performed an analysis similar to that for the two-cell circuits with static, bistable outputs
(Eq. 3). We consider the behavior of the circuit for changes in the bias currents to C2 and
DSI only (Fig. 21). There is a range of currents for which the circuit will produce oscillatory
output. Outside of this range the output will remain constant in time. Two interesting

points of this analysis are

1. The bias level to the DSI neurons appears to be too low in the absence of external
inputs. This is consistent with the experimental observation that activation of the
rhythmic output in Tritonia requires an external excitatory input to the DSI neurons
(Getting & Dekin, 1985)

2. In principle, the CPG in Tritonia should be able to operate with a smaller number of
neurons. The consequence of this decrease in number is a reduction in the range of bias
levels for which oscillatory output can occur. The results calculated for functional
removal of VSI-B are shown in Fig. 21.

It would be interesting to test these ideas. Neurons can be functionally removed from a
circuit by hyperpolarization or, when they are electrically coupled to other neuroms, by

photostimulation techniques (Miller & Selverston, 1979).
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Figure 21. Analysis for the output from the model network for Tritonia as a function of the bias currents to
neurons G2 and DSI. In the absence of external input, the bias level of the DSI neuron is hyperpolarized and the
CPG is inactive. Depolarizing DSI (the ‘ramp depolarization’ in Tritonia; Getting and Dekin (1985)) brings its
bias level into the range for which the CPG can oscillate (arrow). The model predicts that when VSIB is
functionally removed from the CPG, e.g., by strong hyperpolarization, there is a range of operating levels for
which the CPG can still oscillate (shaded region). The magnitude of the currents used in calculating the results

in this figure are similar to the synaptic currents in Tritonia.
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Interlude

We used our associative network model to analyze the CPG controlling the swim rhythm
in the molluse Tritonia. This is a small network, yet it contains many of the basic features
inherent in our model. The sign and time course of the observed synaptic strengths were in
accord with the values predicted by Hebb-like rules. This suggest the utility of such rules for
predicting the strength of the underlying synaptic connections from the observed output
states. The rhythmic output in Tritonia could be understood by a simplified analysis that
employed threshold units as neurons and that replaced the response function of the slow

synapses by a simple time-delay.

Our discussion of Tritonia showed that a simple prescription of neuronal connectivity,
i.e., Hebb rules, was applicable to a small network with recurrent connections. This raises the
question as to whether simple principles that relate neuronal connectivity to the output
activity of the network exist for more complex systems. In particular, the output of many
systems cannot be approximated by a set of few persistent states. Hence, Hebb rules may not
be appropriate. Several investigators have examined the applicability of unsupervised
(Barlow, 1989; Linsker, 1990) as well as supervised (Zipser & Andersen, 1988; Lehky &
Sejnowski, 1988; Lockery et al., 1989) learning rules to a variety of biological systems. We
discuss next the application of supervised learning rules to the relatively small network that

controls local bending in the leech.
Local bending in the leech

The leech exhibits a variety of behaviors whose neurophysiological correlates have been
studied in much detail (Muller et al., 1981). Omne behavior, elucidated by Kristan (1982),
concerns a localized withdrawal response known as the local bending response. The body-wall
of the leech will flex, forming a2 u-shaped bend, in response to localized mechanical

stimulation. A dorsal stimulus causes a dorsal bend and a ventral stimulus causes a ventral
bend (Fig. 22).

Figure 22. The local bending reflex in the leech. The posterior half of the animal is shown. (Top) Resting
position. (Middle} Flexure following dorsal stimulation. (Bottom) Flexure following ventral stimulation.
Adapted from Kristan (1982).
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The circuitry that governs this behavior has been studied by Lockery and Kristan
(1990a; 1990b), who worked out many of the details for a functionally dominant subset of this
circuit. Within each of multiple ganglia, input to the circuit occurs via the activation of
sensory neurons known as pain, or P, cells. These neurons make connections onto a set of
interneurons that in turn make connections onto a set of excitatory and inhibitory motor
neurons. There are 4 sensory input cells (right dorsal (PD), ... , left ventral (PV)), 16-17
interneurons and 8 motor neurons (Fig. 23A). The majority of connections between the
sensory neurons and the interneurons, but not between the interneurons and the motor

neurons, are known (Lockery & Kristan, 1990b).

The input from any P cell results in either a depolarizing postsynaptic potential (PSP)
or a hyperpolarizing PSP in every motor neuron in the ganglion (Fig. 23B). Interestingly,
when pairs of sensory cells were jointly stimulated the response in the motor neurons did not
necessarily correspond to the linear sum of the responses to individual sensory cells. For
example, stimulating both the PD and the PV sensory cells leads to a strong depolarization in
the DE motor neuron, even though the individual responses sum to essentially zero (Fig. 23B).
This suggests that interactions from sensory cells to motor neurons are mediated in a non-

linear fashion by the interneurons.

The local bending circuit was modeled by a feedforward network by Kristan et al. (1989)
and Lockery et al. (1989). Symmetries in the underlying connectivity allow us to consider a
reduced circuit that contains all 4 sensory cells, but only half the number of interneurons and
motor neurons that are in the original circuit (S. R. Lockery, personal communication). The
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Figure 23. Anatomy and physiology of local bending in the leech. (A) Schematic of the neuronal circuit. There
are four sensory neurons, the left and right dorsal pain cells (PDs) and ventral pain cells (PVs), at least 17
interneurons and 8 motor neurons, left and right dorsal excitors (DEs), dorsal inhibitors (DIs), ventral excitors
(VEs) and ventral inhibitors (VIs). (B) Intracellular records from the soma of four motor neurons following
stimulation of one or both sensory neurons that are ipsilateral to the motor neurons. Adapted from Lockery and
Kristan (1990).
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resultant circuit is shown in Fig. 24. The underlying connection strengths were estimated
using supervised learning algorithm, i.e., back-propagation. A non-linear input/output
relation was assumed for the interneurons (Fig. 14B). The algorithm attempted to find a set
of connections so that the sensory-input to motor-output of the model network matched that
of an experimentally derived training set of 9 to 12 pairs of sensory inputs and motor neuron
PSPs.

Lockery et al. (1989) found that the algorithm converged to a number of solutions that
reproduced the observed sensory-input to motor-output relations of the circuit. Further, the
distributed nature of the connectivity in these networks is consistent with the available

physiological data.

The above result raises the question as to whether the observed relation between sensory
input and motor neuron PSPs could be accounted for by a circuit containing a smaller
number of interneurons. This question was considered by Kristan et al. (1989), who examined
the difference between the observed values of the PSPs and the output of the model network
as a function of the number interneurons. The results are shown in Fig. 25. There was a
substantial improvement in the performance of the network when the number of interneurons
was increased from one to three. Only a marginal improvement was realized by an additional

increase in the number of interneurons.

These intriguing results indicate that the learning algorithm used for this circuit
provides insufficient constraints on the underlying connectivity. One possible additional
constraint that may account for the larger network in the leech is stability against variations
in the strength of the connections. A second possibility in that the same interneurons are
used by other behaviors (Kristan et al, 1989). Indeed, one interneuron is known to play a role

in the leech swim circuit (Stent et al., 1978).

Left Right

Sensory neurons @

Motor neurons

Figure 24. Layered network model for the circuit controlling the bending reflex in the leech. Only one group of
connections from each layer is shown. A symmetry in the relation between the sensory-inputs and the motor-
outputs is accounted for by including only 8 interneurons and 4 motor neurons. The inhibitor motor neurons
make fixed inhibitory connections to their respective excitor motor neurons. Adapted from Kristan et al (1989)
following discussions with Dr. S. R. Lockery.
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Figure 25. The root-mean-square (RMS) error in the output from the model network as a function of the
number of interneurons in the reduced leech circuit (Fig. 24). Adapted from Kristan et al. (1989) following
discussions with Dr. S. R. Lockery.

Summary

We have discussed the relation between the pattern of output activity and the
underlying synaptic connectivity in small nervous systems. In three circuits, two that produce
switchable, bistable output states and the circuit that controls swimming in Tritonia, the
output pattern could be understood in terms of neurons that behaved as threshold devices
and connections between the neurons that behaved as linear elements. In these circuits there
was a clear correspondence between the output pattern and the sign of the underlying
synaptic connections. The analysis of a fourth circuit, mediating the local bending response in
the leech, demonstrated some of the issues that arise when applying simple design principles

to the connectivity in larger networks.
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Fund for Basic Research administered by the Israeli Academy of Arts and Sciences and by the US-Israeli
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