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INTRODUCTION

Dynamic optical imaging data generate large data sets that contain signal and noise
components of considerable spatiotemporal complexity. Advances in available com-
putational power now make it possible to identify and remove noise components and
characterize signal structure using modern signal and image processing techniques.

Noise in imaging data arises from two broad categories of sources, biological and
nonbiological. Biological sources like cardiac and respiratory cycles are routinely pres-
ent, as well as motion of the experimental subject and slow vasomotor oscillations
(Mayhew et al. 1996; Mitra et al. 1997). In all studies of evoked activity, ongoing brain
activity not locked to or triggered by the stimulus is another source of biological noise.
Nonbiological noise sources in imaging experiments include photon-counting statis-
tics, electronic instrumentation, 60 Hz electrical activity, CCD camera refresh-rates,
and building vibrations, to name a few. All of this activity combines to mask the neu-
ronal signals of interest.

This chapter presents applications of modern signal and image processing tech-
niques that have proven useful for optical imaging data with both intrinsic and extrin-
sic sources of contrast. The main tools are drawn from multitaper spectral analysis,
harmonic analysis, and, when dealing with multivariate data (the usual situation in
imaging experiments), the singular value decomposition (SVD).

MATHEMATICAL METHODS

Three tools for the analysis of optical imaging data are presented below: multitaper
spectral estimation, harmonic analysis, and the SVD in two different forms. This pre-
sentation is focused on the use of the tools rather than on their derivation. Further
information on the technical aspects of the discussion is available in the following ref-
erences (Thomson 1982; Percival and Walden 1993; Mitra and Pesaran 1999).
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Multitaper Spectral Estimation

Spectral estimation is based on the premise that the frequency domain is the appro-
priate basis in which to examine dynamic activity. This assumes that the activity is sta-
tionary. Although this is not usually true of neural activity on long time scales, say
hours, it is not unreasonable to suggest that on a subsecond time scale neural process-
es change very little. The approach is to then repeat the calculation on neighboring
windows overlapping in time, usually displaced by a fixed amount. The result is a time-
frequency representation of the function being calculated.

Conventional spectral analysis involves multiplying time series data by a single
taper (conventionally known as a window). Examples of such single tapers are
Hamming, Hanning, and Cosine tapers. We use multitaper methods in which many
tapers are used to operate on a single window in time of the data. The tapers used are
the Slepian functions, or discrete prolate spheroidal sequences (DPSS), which form a
set of orthogonal functions. The Slepian functions are characterized by a single pa-
rameter W also called the “bandwidth” parameter. This parameter specifies the fre-
quency and bandwidth of the Slepian functions. For a given frequency half-bandwidth
W and length N, there are approximately 2NW Slepian functions w,(t) (k = 1..[2NW],
t = 1..N) that have their spectra well concentrated in the frequency range [-W, W].

Step 1: Computing the Slepian Functions

The Slepian functions are characterized by their length N and bandwidth parameter
W, and routines exist on the web to calculate them (see WWW site at
http://www.vis.caltech.edu/~WAND/wand98/bijan.html) using the LAPACK library
of linear algebra routines. The routines are also available in Matlab 5.0 or later, see rou-
tines dpss and pmtm. The parameters N and W determine the maximum number of
functions usable, K = [2NW], and their selection is up to the judgment of the investi-
gator based on a knowledge of the dynamics of the processes under investigation. This
choice is then best made iteratively by visual inspection and some degree of trial and
error. 2NW = 2W/(1/N) gives the number of effectively independent frequencies over
which the spectral estimate is smoothed, so that the variance in the estimate is typi-
cally reduced by 2NW. Thus, the choice of W is a choice of how much to smooth. As
a rule of thumb, we find that fixing the time bandwidth product NW at a small num-
ber (typically 3 or 4) and then varying the window length in time until sufficient spec-
tral resolution is obtained is a reasonable strategy.

Step 2: Computing the Tapered Fourier Transforms

The next step is the computation of the tapered Fourier transforms of the data
x,(t=1,...,N) for each taper w, (k) (k=1,...,K)

N
£, = 2w ), (1)



Analysis of Dynamic Optical Imaging Data 9.3

Step 3: Direct Spectral Estimate

The simplest example of the multitaper method is given by the direct multitaper spec-
tral estimate S, . (f), obtained as the average over individual windowed spectral esti-
mates,

1 % 2
Surlf) = Eglfk(ﬂl (2)

The spectrum may be computed with a moving window to obtain a spectrogram,
which provides a time-frequency representation of the data.

Harmonic Analysis

Multitaper methods provide a robust and efficient way to carry out harmonic analy-
sis: the analysis of discrete sinusoidal components of activity present in a continuous
background. This allows the detection, estimation of parameters, and extraction of the
sinusoidal activity on a short moving window.

An optimally sized analysis window is needed. This window must be sufficiently
small to capture the variations in the amplitude, frequency, and phase, but long
enough to have the frequency resolution to separate the relevant peaks in the spec-
trum, both artifactual and originating in the desired signal.

Step 1: Detection and Estimation of a Sinusoid in a Colored Background

The presence of a sinusoidal component in colored noise background may be detect-
ed by a test based on a goodness of fit F-statistic (Thomson 1982). The activity is mod-
eled on a sinusoid of frequency f with a certain amplitude and phase added to a ran-
dom noise process which is locally white on a scale given by the bandwidth parameter
W of the tapers.

a(t) = X A_coslft+ 6, ] + da(t) (3)
Using the tapered Fourier transforms of the data, x, (f), an estimate of the ampli-

tude A_and phase ¢_ is given by the complex amplitude, p, (f,) of the sine wave
A _Ekxk(fn) U(0)
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The goodness of fit F-statistic which allows us to test the hypothesis that the sine
wave is present at that frequency is given by
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F(f)=

The quantity in Equation 6 is F-distributed with (2,2K-2) degrees of freedom. The
significance level is chosen to be 1-1/N so that on average there will be one false detec-
tion of a sinusoid across all frequencies.

If the cause of the estimated sinusoid is considered to be noise, one may subtract it
from the data, and the spectrum of the residual time series may be obtained as before.

Step 2: Removal of Periodic Components

The parameters A , f , and ¢ are estimated as a function of time by using a moving
time window. The goal is to estimate the smooth functions, A (1), f,(¢), and ¢,(¢), that
give the component to be subtracted from the original time series.

The frequency F-test described above is used to determine the fundamental fre-
quency tracks f, (¢) in Equation 3. The time series used for this purpose may either be
a single time series in the data or an independently monitored physiological time
series. The fundamental frequency tracks are used to construct the tracks for the har-
monics and sums and differences of individual oscillations, usually respiration and
cardiac rhythms, generated by interactions between them. The final set f,_ () contains
all these frequency tracks.

The estimated sinusoids are reconstructed for each analysis window, and the suc-
cessive estimates are overlap-added to provide the final model waveform for the arti-
facts. If more precision is required, the estimates for the amplitude and phase for each
window can be spline-interpolated to each digitization point to allow for nonlinear
phase changes over the shift between each window. This is akin to using a shift in time
between two successive analysis windows of the sampling rate, but is achieved at far
less computational cost.

Multivariate Time-series Methods

To this point, the operations have been described on univariate data, but optical imag-
ing data consist of many pixels of activity that are recorded simultaneously and lead to
multivariate time series.

The SVD is a general matrix decomposition of fundamental importance that is
equivalent to principal component analysis in multivariate statistics, but also generates
low-dimensional representations for complex multidimensional time series.
Consequently, the SVD is a powerful tool both to reduce the number of interesting
dimensions of the data and to characterize coherent states of activity. Routines to com-
pute the SVD of a general matrix are widely available as part of linear algebra packages
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such as LAPACK or as part of general data analysis software such as IDL (Research
Systems) and MATLAB (Mathworks).

We present two applications of the SVD, one to imaging data in its more usual space
and time dimensions, the space-time SVD, and one when we have Fourier-trans-
formed the time dimension into frequency to give the space-frequency SVD.

Space-time SVD

The space-time SVD is a one-step operation on the space-time data I (x, ¢). The SVD
of such data is given by

I(x,0) = XA T (X)a, (£) (7)

where I (x) are the eigenmodes of the “spatial correlation matrix.” Similarly a_ () are
the eigenmodes of the “temporal correlation matrix” (Mitra and Pesaran 1999). The
values of A give the amount of power or variance in each of the ordered space and
time eigenmodes. Their relative values give an indication of how large the signal is
compared to the noise and allow data dimension reduction for the purposes of visual
inspection.

Applications of the SVD on space-time imaging data are abundant in the literature.
However, the space-time SVD suffers from a severe drawback in the present context
because there is no reason the neurobiologically distinct modes in the data should be
orthogonal to each other, a constraint imposed by the SVD. In practice, it is observed that
on performing an SVD on space-time data, different sources of fluctuations may appear
in the same mode of the decomposition, thus preventing segregation of the activity.

In the next section, a more effective way of separating distinct components in the
data using a decomposition analogous to the space-time SVD, but in the space-fre-
quency domain, is presented. The success of the method stems from the fact that the
data in question are better characterized by a frequency-based representation.

Space-frequency SVD

The basic idea is to project the space-time data to a frequency interval, and then per-
form an SVD on this space-frequency data (Thomson and Chave 1991; Mann and
Park 1994; Mitra et al. 1997). Projecting the data on a frequency interval can be per-
formed effectively by using DPSS with the appropriate bandwidth parameter.

Step 1: Constructing the space-frequency matrix. Given the N_X N space-time data
matrix I = I (x, t), the space-frequency data corresponding to the frequency band
[f — W, f+ W] are given by the N_X K complex matrix

N

T (k) = % I(x,E)w, (1, W)e (8)

Step 2: SVD of the space-frequency matrix. We are considering here the SVD of the
N _xK complex matrix with entries I (x,k;f) for fixed f.



9.6 Microscopes, Image Acquisition, and Basics of Fluorescence Imaging

(k) = 2 (0T (s, (k) ©)

This SVD can be carried out as a function of the center frequency f, using an appro-
priate choice of W. At each frequency f, one obtains a singular value spectrum A(f)
(n = 1,2,..,K), the corresponding (in general complex) spatial mode I (x;f), and the
corresponding local frequency modes a_(k;f). The frequency modes can be projected
back into the time domain to give (narrowband) time-varying amplitudes of the com-
plex eigenimage. For details of this reconstruction, see Mann and Park (1994).

Step 3: A measure of spatial coherence. In the space-frequency SVD computation,
an overall coherence C (f) may be defined as (it is assumed that K< N)

)\’ 2

Zn =1 ln(f)

The overall coherence spectrum then reflects how much of the fluctuation in the fre-
quency band [f - W, f + W] is captured by the dommant spatial mode. The value

ranges between 0 and 1 and for random data C (fy~ <, which sets a threshhold for
significance.

C -

EXPERIMENTAL METHODS

We present an application of the above tools to optical imaging data from rat
somatosensory cortex. In this data set, the cortex was stained with a voltage-sensitive
dye, and we consider the changes in fluorescence as a function of time (see Chapters
49 and 50).

The subject was a male Sprague-Dawley rat with a mass of 58 g. The animal was
prepared and maintained as described previously (Kleinfeld and Delaney 1996). An
approximately 4 X 4-mm region of the primary vibrissa areas of parietal cortex was
stained, following microdissection of the dura, with the dye RH-795 (Molecular
Probes). A metal frame was fixed to the skull that surrounded the craniotomy as a
means to rigidly hold the head of the animal to the optical apparatus. With the addi-
tion of agarose gel and a coverglass window, this frame further served as an optically
clear chamber that sealed and protected the cortex (Kleinfeld and Delaney 1996);
resealing the craniotomy was crucial for the mechanical suppression of excessive
motion that would otherwise result from changes in cranial pressure with each heart
beat and breath.

We recorded the fluorescent yield from the cortical surface with a CCD camera (no.
PXL 37; Photometrics), from which the signal was calculated as the change in fluores-
cence relative to the background level. The pixel field was 30 x 90, the sampling rate
was 95.4 Hz, and records were 3000 frames (286 sec) in length. Each pixel represents
an estimated 300,000 electrons, so the sensitivity per pixel per sample was limited to a
fractional change of approximately 0.002. The EKG and breathing were further record-
ed. No stimuli were applied to the rat during data acquisition. Note that the voltage-
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sensitive dye fluorescence reports intrinsic changes in the optical properties of cortex
(Grinvald et al. 1986; Kleinfeld and Delaney 1996), including those related to hemo-
dynamics.

DATA ANALYSIS STRATEGY

In this section, we present an application of the above tools to the intrinsic component
of the optical imaging data from the rat somatosensory cortex. There are two stages to
the analysis, exploratory and confirmatory. Exploratory analysis determines parame-
ters of interest and the structure of any noise present. The noise is then filtered and the
signal structure is characterized.

Step 1: Visualization of the Raw Data

Direct visualization of the raw data is the first step to check the quality of the experi-
ment and direct further analysis. Individual time series from the images and movies of
the images should be examined.

If the images are noisy, e.g., due to large shot noise, truncation of a space-time SVD
with possibly some additional smoothing provides a simple noise-reduction step for
the visualization.

A space-time SVD of the data is first computed, followed by sinusoidal modeling of
the leading principal component time series (Figure 9.1). This is useful for two rea-
sons: (1) The images in question typically have many pixels, and it is impractical to
perform the analysis separately on all pixels. (2) The leading SVD modes capture a
large degree of global coherence in the oscillations. However, the procedure may as
well be applied to individual image time series.

Step 2: Preliminary Characterization

The next stage aims to identify the various artifacts and determine a preliminary char-
acterization of the signal. A time-frequency spectral estimate described above should be
calculated (Figure 9.1B). This can be done on individual pixels, or a space-time SVD
can be first calculated followed by operations on the leading principal components.

A more powerful characterization is obtained by the space-frequency SVD (Figure
9.2). There is sufficient frequency resolution in optical data so that the oscillatory arti-
facts segregate well. Studying the overall coherence spectrum reveals the degree to
which the images are dominated by the respective artifacts at the relevant frequencies,
while the corresponding leading eigenimages show the spatial distribution of these
artifacts more cleanly compared to the space-time SVD (Figure 9.2). Moreover, pro-
vided the stimulus response does not completely overlap the artifact frequencies, a
characterization is also obtained of the spatiotemporal distribution of the stimulus
response.
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Figure 9.1. Optical imaging data from rat somatosensory cortex. (@) Noise suppression of cardiac
and respiratory rhythms. The figure shows the results of filtering the respiratory and cardiac
rhythms from a single principal component mode in the time domain. The top curve is the raw
mode. The middle curve shows the reconstructed noise signal using the overlap-add technique
described in the text. The bottom curve shows the residual signal after noise suppression. (b) Time-
frequency representation of the raw mode from the top of part a. The black lines show the estimat-
ed frequency tracks. The fundamental of the respiratory rhythm was at 1.5 Hz and that of the car-
diac rhythm at 7 Hz.

Step 3: Artifact Removal

Based on the preliminary inspection stage, one can proceed to remove the various arti-
facts. The techniques described in this chapter are most relevant to artifacts that are
sufficiently periodic, such as cardiac/respiratory artifacts, 60-Hz and other frequency-
localized noise, such as building/fan vibrations.

The fundamental operation is performed on an individual time series. This may be
performed pixel by pixel in the image, or to reduce computational time, the steps may

12 15
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Figure 9.2. Space-frequency SVD of optical imaging data from rat somatosensory cortex. (a) The
amplitude of the dominant eigenimages as function of center frequency. The respiratory rhythm
appears as a spatial derivative highlighting the blood vessels at 2 Hz and harmonics. The cardiac
rhythm appears as an increase in luminescence on the vessel at 6.8 Hz. At intermediate frequencies,
spatial structure is diminished. (b) Overall coherence for the eigenimages in part a.
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alternatively be performed on the leading principal component (PC) time series and
the artifacts thus reconstructed may be then subtracted from the raw data. In the
example presented above (see Figure 9.1), the fundamental frequency tracks were ade-
quately extracted from the PC time series. Alternatively, monitored cardiac and respi-
ratory time courses may be used for this purpose.

Step 4: Stimulus Response Characterization

This may be the most delicate step, because the goal of the experiment is usually to
find the stimulus response, which is not known a priori. If the stimulus is presented
periodically and/or repeatedly, as is usually the case, the characterization of stimulus
response is fairly straightforward. However, coherent activity related to a single pre-
sentation of the stimulus may be efficiently extracted by the space-frequency SVD
technique if the stimulus response is known a priori to inhabit a particular frequency
band (including a low-frequency band). An example of the use of this technique may
be found in Prechtl et al. (1997) where the phases of the complex SVD eigenmodes
were used to obtain a description of the stimulus response in terms of multiple trav-
eling waves of activity.
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