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Abstract

An oscillator neural network model that is capable of processing local and global
attributes of sensory input is proposed and analyzed. Local features in the input are encoded
in the average firing rate of the neurons while the relationships between these features can
modulate the temporal structure of the neuronal output. Neurons that share the same
receptive field interact via relatively strong feedback connections, while neurons with
different fields interact via specific, relatively weak connections. The model is studied in the
context of processing visual stimull that are coded for orientation. We compare our
theoretical results with recent experimental evidence on coherent oscillatory activity in the
cat visual cortex. The computational capabilities of the model for performing discrimination
and segmentation tasks are demonstrated. The effect of axonal propagation delays on

synchronization of oscillatory activity is discussed.

Introduction

The linking of sensory inputs across multiple sensory receptive fields is a fundamental
task of semsory processing. Such linkage is necessary to identify distinct objects, segment
them from each other and separate them from background. The theoretical issues raised by
this processing have been difficult to approach within the framework of most current neural
network models. This difficulty originates from using only the levels of activity in individual
neurons to encode information. It has been suggested by von der Malsburg and Schneider (1)
that global properties of stimuli are identified through correlations in the temporal firing
patterns of different neurons. This concept gained support from a recent series of

experiments by Eckhorn and coworkers (2) and Gray and Singer and coworkers (3-6).

1 On leave from the Racah Institute of Physics, Hebrew University, Jerusalem, Israel 91904.
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Our theoretical work is motivated by the following aspects of the experimental results

on coherent oscillatory activity exhibited by neurons in the cat primary visual cortex (2-6)
(Fig. 1).
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Figure 1. Schematic summary of the experimental evidence on phase between neurons in different

regions of the cortex. The large ovals corresponds to the receptive field that is shared by different neurons
(circles with stripes) whose individual orientation preference is indicated by the orientation of the stripe. The
long bars correspond to stimuli with orientation 6. A The output of neurons that share the same receptive
field are correlated, independent of their orientation preference. B The output of neurons in spatially separated
receptive fields is correlated if the separate stimuli have the same relative orientation. C The output of neurons
in spatially separated receptive fields is uncorrelated if the separate stimuli have the same relative orientation.

Neurons that respond to moving, oriented bars have a periodic component in their
spiking output. The average period, ~ 20 - 30 ms, appears to be the same for different

neurons and is independent of the orientation of the stimulus.

The activity of neurons that share a receptive field can be synchronized by the
presentation of a single, oriented bar. The synchronization is fairly insensitive to the

orientation preferences of the neurons (Fig. 1A).

Neurons with separate receptive fields will fire in synchrony only if bars that
simultaneously pass through the individual fields have similar orientation.
Interestingly, this occurs even though the coherent activity of neurons that share the
same receptive field is largely independent of the orientation of the stimulus (Figs. 1B
and 1C).

The strength of the synchronization of the activity of neurons with different receptive
fields is significantly enhanced by the use of a single long bar, that extends across

several fields, rather than two discontinuous, short bars.
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5. The outputs of neurons with different receptive fields are not synchronized if the two
stimuli move in opposite directions, even for neurons that respond vigorously to both

directions of motion.

6. There were no substantial phase-shifts in the temporal coherence for any of the

experimental paradigms.

In this paper we describe a model neural network (7) that is capable of linking activity
in disparate visual receptive fields in a manner that depends on extended features of the
stimulus. The network is comprised of neurons that act as oscillators. The amplitude of
their output corresponds to the average neuronal firing rate and the phase describes the

temporal structure of the neuronal outputs.

The role of cortical connections in maintaining the phase coherence between neurons
has been the topic of much recent investigation (8-14). Our phenomenological model of phase
oscillators greatly simplifies the dynamics and permitted us to make a comprehensive,
analytical treatment of the temporal and spatial coherence in terms of few parameters. Thus
we were able to focus on specifying the pattern of connectivity that is capable of generating
spatial and temporal coherence in neuronal output similar to that observed in experiments.
Further, our model and its analysis provide explicit relations between the underlying

neuronal connectivity and the capability of the network to discriminate between stimuli.

Model

Phase equations

The firing of the neurons is considered as stochastic events, described by the probability
per unit time that the neuron at location r will fire at time £ This probability function,

P(r,t), is assumed to have the form

P(r,t) = V() [1 N cos@(r,t)]. (1)

The phases &(r,t) parametrize the temporal firing pattern of the neurons. The coefficient A
corresponds to the relative contribution of the temporally modulated neuronal activity. The
amplitude V(r) is the normalized firing rate averaged over the duration of stimulus. If no
stimulus is present within the receptive field of the neuron at r, V(r)=0. With a stimulus

moving across the field, V(r) is taken to coincide with the ‘tuning’ curve of the neuron, i.e.,

V(r) = V(bo(r) — 6(r)) (2)

where §y(r) is the orientation of the stimulus and é(r) is the orientation preferred by the

neuron. An illustration of a tuning curve is given in Fig. 2. We chose the form

V(ao(l‘) e 0(1‘)) = e | Bo(r)—8(r)} /o (3)
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Figure 2. The tuning curve assumed for each of the neurons. The curve is the average firing rate of the
neuron in response to a moving bar with orientation ;. The neuron has orientation preference §. The width of
the curve was taken as o = 36°, corresponding to a half-width at half maximum of 25°(27).

where o is the width of the tuning curve, for convenience in our analysis. Stimuli move along
an axis that is perpendicular to their orientation. The difference in response to forward and

reverse movement on this axis is the difference between V(6) and V(6—180°).

The phase variables that govern the temporal aspects of the neuronal activity are

assumed to obey equations for a system of coupled phase-oscillators with noise (15), i.e.,

To<i>(r,t) = wry + n(r,t) — 3 J(r, r')sin [d)(r,t) — <I>(r’,t)] (4)

rir

where 7y is the neuronal time-scale and w is the frequency of the neuronal oscillations. We
assume that 79 << 27 /w; this is consistent with the estimates 75 =~ 3 ms and and
27 /w =~ 25 ms from experiment (2,3). The term n(r,t) represents white noise with variance
<n(r,t) n(r',t) > = 2T 7y &0 8(t—1t'), where T is a measure of the noise level. The noise
represents fluctuations in the input to a cell. The connection strength J(r, r') mediates the
interaction between the phases of the neurons at locations r and r’. Lastly, the sum over r'

includes all neurons in the network.
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Architecture of the connections

The interactions between the neuronal phases are assumed to encode information about
the position and orientation of the stimulus. We postulate that they depend on the average

level of activity of the pre- and post-synaptic cell, t.e.,

J(r, v') = V(r) W(r, ¢') V(') (5)

where W(r, r') specifies the architecture of the connections and is independent of the

external stimulus.

A central element in this model is the introduction of short-range interactions that
couple neurons with strongly overlapping receptive fields and long-range interactions that
couple neurons with non-overlapping receptive fields. We assume an architecture in which
neurons are grouped into clusters, analogous to hypercolumns in the primary visual cortex
(16,17). The neurons in each cluster respond to a stimulus in a common receptive field.
They are labeled by the spatial coordinates of the cluster, denoted R, and their preferred

orientation, 4, which is assumed to be uniformly distributed within each cluster (Fig. 3).

Each neuron interacts with cells in the same cluster via short-range connections, taken

Ws
Wen(6.8) = — (8)

V(8-8")

0°

Figure 3. Schematic of the neuronal architecture assumed in our model. Neurons that share a common
receptive field are grouped into clusters. Each neuron interacts with cells in the same cluster via short-range
connections with strength Ws/N and with cells in different clusters via long-range connections with strength
W, /N2



118 H. Sompolinsky, D. Golomb, and D. Kleinfeld

where N is the total number of neurons in the cluster that are activated by the stimulus.
The above form allows the coherence between two active neurons with the same receptive
field to vary only moderately as a function of their preferred orientations. Neurons in

different clusters interact via long-range connections, taken as

W,
Wene(8,8") = N—’;F(a—e') ; R#R'. @)

We have assumed that Wgg(6,6') does not depend on the spatial separation between the
clusters. The function F(6—¢') will be chosen, as described below, so that the phase
coherence between different clusters will have a substantial dependence on the relative
orientation of the stimuli. The relative strength of the long-range to the short-range
connections scales as 1/N << 1. This insures that the coherence between neurons that
share the same receptive field is largely independent of the the global properties of the

stimulus.

Feature specificity of the long-range connectivity.

Orientation selectivity. The sensitivity of the coherence between two clusters to the
relative orientation of the stimuli depends on the effective interaction between the clusters.
The effective interaction is related to the form of the long-range connections between neurons
in the two clusters, specified by F(6 — ¢'). A simplified form of the relation between
F(6 — ¢') and the effective interaction, denoted Jgp,, is found by averaging the interactions

between all pairs of neurons in the two clusters (Egs. 5 and 7), i.e.,

Wy B qede
Trpe = —Nif ) ~2 Va(®) FO=0) V(@) ®)
4]

where Vg(6) = V(f(R) — 6(R)). This relation is valid in the limit Wy >> T, for which the
neurons in each cluster are fully synchronized. Note that Jgg is a function of the difference
in the orientation of the stimuli, Afy = 65(R)—8y(R'), since V() and Vi(8) depend on the

orientation of the external stimuli (Eq. 2.2).

The absence of phase-shifts in the experimentally observed cross-correlations (2,3)
indicates that Jgzp is excitatory. Furthermore, experimental evidence (2,4,6) and
computational considerations suggest that Jggp is a rapidly decreasing function of Afy. To
account for these properties, we consider first the possibility that the long-range connections
represented by F(§ — ¢') are purely excitatory and occur only between neurons with similar

orientation preferences (Fig. 4A), i.e.,
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Figure 4. Interaction between two spatially separated clusters that involves purely excitatory
connections. (A) A form for the long-range connectivity between neurons in different clusters, with orientation
preferences § and ¢, in which only neurons with similar orientation preferences form excitatory connections
(Eq. 9). (B) The effective interaction for the connectivity in part A (Eq. 10).

F(0—8) = o 8(6—0') (9)

where §(z) is the Dirac delta function. This hypothesis leads, for the tuning curve specified

by Eq. 2.3, to

W,
TL 1 e-}Aeoi/”. (10)

| Afg |
JRR,(A%) == + —0_—-—

The resultant orientation dependence is relatively weak, as shown in Fig. 4B. The angular

range of this interaction is roughly twice the width of the neuronal tuning curve (Fig. 2),

Within the framework of the linear filtering (Eq. 8), a sharper dependence of Jgr on

Aby requires the use of inhibitory as well as excitatory long-range connections. An interesting
form of such connectivity is shown in Fig. 5A, s.¢.,

PR
F(o—6)= [1—-0° 9 ¢ ~(0-07/2¢ (11)
30—y

Substituting this form, together with the exponential form for the tuning curve, into Eq. 2.8
yields

W o —(20) /¢ (12)

JRR:(AB()) =~ —]V—
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where ¢ is a free parameter that controls the angular range of the effective interaction. A
reasonable choice for this parameter is ¢ < 0. The results for Jrp with ¢ = 0.3 o are shown
in Fig. 5B.
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Figure &. Interaction between two spatially separated clusters that involves both excitation and
inhibition. (A) A form for the long-range connectivity between neurons in different clusters in which neurons
with similar orientation preferences form excitatory connections and neurons with dissimilar preferences form
inhibitory connections (Eq. 11). (B) The effective interaction for the connectivity in part A (Eq. 12).

Directional selectivity We have considered only neurons that are sensitive to one
direction of motion of the stimulus (Fig. 2). Stimulating two clusters of neurons with co-
linear bars moving in opposite directions, i.e., Af;=180°, will not generate coherence

between the activity of neurons in the two clusters.

It is known from experiment that even neurons that are not selective to the direction of
motion exhibit oscillatory output in response to a stimulus moving either forward or
backward (4,5). Yet the output of two such neurons remains uncorrelated when bars moving
in opposite direction pass through their respective, receptive fields (4,5). These observations
can be accounted for within the model by incorporating neurons that are insensitive to the
direction of motion of the stimulus (Fig. 8). The short-range connections will not depend on
the directional properties of the neurons. However, the long-range connections will occur
predominantly between cells that are directionally selective and that have the same
directional preference. As a consequence, only directionally sensitive neurons mediate the
temporal coherence between different clusters. This leads to coherence between the output
of neurons in separate clusters only when the two stimuli move in the same direction. In the
remainder of the paper we will focus only on issues related to orientation selectivity. Thus we
will assume for simplicity that all the neurons have directional sensitive tuning curves, as in
Fig. 2.

Before presenting the results of our analysis of the model, we discuss the quantities that

we wish to calculate.
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Figure 8. An architecture that incorporates neurons that are insensitive to the direction of motion of the
stimulus as well as those that are sensitive to the direction.
Correlation functions

Coherent output in a population of neurons is deduced in experiment from the auto-
correlogram of the output of each neuron and cross-correlograms of the output of pairs of
neurons. The correlograms can be expressed in terms of the correlation functions of the

underlying phase variables in the model. We define

De(8,t) = wt + ¢(0,¢) (13)

where ¢ represents the noisy component of the total phase ® for a neuron in the R-th cluster

with orientation preference §. The auto-correlogram is

<Pu(8,0) Pa(d+7)> = V3(8) [ 1 + 3 Cn(8,7) cos wr | (14)

where < -+ > denotes averaging over time ({ >> 1/w) and the auto-correlation function

Cr(0,7) = <cos(¢r(8,t)—ér(8,t+7))> measures the temporal fluctuations in the phase.

The cross-correlogram of the activity of a neuron in the R-th cluster with orientation

preference @ with one in the R'-th cluster with orientation preference ¢ is

<PR(05“’) PR'(oli t+T)>t = Vﬂ(o)VR’(el) [1 + >‘2 CRR’(oygll‘r) cos WT] (15)
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where the cross-correlation function Crp(8,8,7) = <cos(¢g(d,t)—dg(#,t+7))> measures the
amplitude of the phase coherence. Synchronization occurs with zero phase-shift in our

model; we return to this issue in the Discussion.
Results and Examples

The model was analyzed using mean-field theory (7,16) and applies when the number of
active neurons in each cluster is large (/N >> 1). For concreteness, we assumed that the
tuning curve for every neuron has the shape shown in Fig. 2. The main results are given

below.

Temporal coherence within a single cluster. The presence of coherent oscillations
depends on the rate of decay of the correlation functions. When the level of noise is large,
the neurons behave as overdamped oscillators and both Cg(6,7) and Cgg(4,6',7) decay to zero
in a time ~ 75 /T << 1/w (dashed line; Fig. 7). In contrast, the neurons exhibit persistent,

coherent oscillations when the level of noise is below a critical value, T, where

Ws 7 4g
Te= — [~ V(). (16)
[ c

For the tuning curve described by Eq. 3 (Fig. 2), T¢c = 0.5 Ws. When the noise level is less
than T¢, the auto-correlation function decays from its initial value Cg(8,0) = 1 to a long-

time limit Cg(8) = lim Cg(f,7) > O (solid line; Fig. 7). This rapid decay is characterized by
T— 00
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Figure 7. The time dependent part of the auto-correlogram for a neuron that is stimulated by a moving
bar oriented at its preferred orientation, i.c., # = 6. We chose W= 0.2, for which 75 ~ 37, (Eq. 17) and
Te= 0.1 (Eq. 16) with T = 0.2T¢ (solid line) and T = 5T (dashed line). The period of oscillations of the
neurons was taken as 27 /w = 8 7.



Phase Coherence and Computation in a Neural Network of Coupled Oscillators 123

70

S V)W a7)

and results in a peak in the auto-correlation function that is centered at 7= 0 and has a
width of ~ 275. The magnitude of Cg(6) depends on 8§ as well as the level of noise (Fig. 8).
The presence of noise and the restricted number of active neurons in the cluster lead to an
eventual decay of the correlation functions, characterized by a time-constant
1, ~ Nrg/T >> 1/w. Thus the long-time limit referred to above corresponds to
Ty << T << 7L,
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Figure 8. The dependence of the long-time limit of the auto-correlation function on the orientation of
the stimulus relative to the preferred orientation of the neuron.

The cross-correlation functions between neurons in the same cluster do not have a
substantial peak centered at 7= 0. Their magnitude is related to the long-time limit of their

auto-correlation functions through

Crr(6,0,7) = / Cr(0) Cr(¥) . (18)

There are no phase-shifts associated with the cross-correlation, i.e.,, X =0 (Eq. 15), as the
short-range connections are excitatory. Thus, all of the active neurons in a cluster will fire

coherently as a result of the extensive, short-range connectivity.

Temporal coherence of spatially separated clusters. The coherence between

neurons that belong to two separate clusters depends on the coherence of the average phases
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of the clusters. The cross-correlation function between a neuron in the R-th cluster with one

in the R/-th cluster is

Cmv(eyﬂls") = Cn(o) Cn’(el) Crpr (19)

where Cgrg measures the correlation of the average phases of the two clusters for times

T << NT() ~ T

The extent of the coherence between active clusters depends on their direct interaction
as well as indirect interactions via other active clusters. We consider below several examples
of extended stimuli and demonstrate the dependence of Cgry (Eq. 19) on global features of
the stimulus. For each example we use the form of F(6—¢') given by Eq. 11 (Fig. 4A), with ¢

chosen so that the half-width at half-maximum of Jgg is half that of the tuning curve.

Stimulation by two short bars. The simplest example of long-range coherence
involves two clusters that are stimulated by separate, short bars whose length spans the
individual receptive fields. The correlation of the average phases of the two clusters depends
on the relative orientation of the bars through Jpp (solid lines, Fig. 9). Note that the choice
F(0—6") = o 66 — ¢") (Eq. 9) results in a relatively weak dependence of Crp on Afg (dashed
line, Fig. 9).
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Figure 9. The correlation between the average phases of two clusters as a function of the difference in
orientation of two moving, short bar. The solid lines were calculated with F(# — ¢') including excitatory as well
as inhibitory connections (Eq. 11) while the dashed lines refer to purely excitatory connections (Eq. 9).

Short versus long bars. The coherence between clusters can be enhanced when
several receptive fields, as opposed to just two fields, are stimulated by bars moving with the
same orientation. The enhancement depends on the magnitude of W; /T and is most
pronounced when this ratio is smaller than unity (Fig. 10). The experimental evidence (4) is

comsistent with W /T < 1.
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Figure 10. The enchancement in the correlation between two spatially separated clusters that are
stimulated by a moving, long bar as opposed to two co-linear, short bars. The length of the bar, L, is expressed
as the number of receptive fields that it spans.
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Figure 11. Segmentation of four oriented bars that span several receptive fields. The bars are of equal
length and spacing and are arranged to subtend the same total angle (W, /T = 1 and L =5). (A) Bars
arranged as a smoothly varying stimulus. (B) Bars arranged as discontinuous stimuli. (C) The pair-wise
correlations between adjacent clusters are equal; Cjp = Cgg = Cgy =~ 0.6 (Afy = 15°). Neurons in all of the
active clusters fire coherently and the end-to-end correlation is Cyy = (C)3)® = 0.2. (D) The pair-wise
correlations between adjacent clusters are Cyy = Cjy = 0.8 (A = 0°) and Cgy = 0 (A6° = 45°). The end-to-
end correlation is Cp4 = 0.
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Extended curved objects. The curvature of stimuli that span several receptive fields
can be used to segment a stimulus into separate objects. We illustrate this by considering
the coherence between clusters in the presence of four, long bars with orientations that vary
in space (Fig. 11). In the case of a smooth variation there is a substantial correlation between
the output of neurons in all pairs of clusters, including those at the end of the object. In
contrast, with a discontinuous variation in orientation the coherent activity of the neurons is

segmented into two groups.

Discussion

We used a phenomenological model that greatly simplified the neuronal dynamics. The
advantage of this approach is that the description of the temporal and spatial coherence in
the neurons involves few parameters, e.g., the scales of short-range and long-range connection
strength and the level of noise. These parameters can, in principle, be determined from the
amplitude and time-dependence of the measured correlation functions. Further, there are
predicted relationships among the correlation functions (Egs. 18 and 19). The experimental

determination of these scales and relationships will test the consistency of the model.

Architecture of connectivity. Our model assumed that neurons that share the same
receptive field are grouped in clusters. The interactions between neurons within a clusters
are strong and depend only moderately on the orientation preference of the neurons. The
interactions between neurons in different clusters are relatively weak and depend strongly on

their orientation preference.

This architecture offers a number of attractive computational features, some of which
have been alluded to above (Figs. 9-11). Quite generally, this architecture allows proximal
stimuli with disparate features to be linked as a single object. Consider, for example, the
recognition of the connected versus the disconnected pattern in Fig. 12. For the connected
pattern, the neurons that respond to orthogonal segments interact via short-range
connections. Thus all of the neurons oscillate coherently. For the disconnected pattern, the
neurons that respond to orthogonal segments do not interact. Thus their output is
segmented into two coherent populations. In addition, the architecture in our model may
provide a mechanism for linking several features, e.g., orientation and color, that are

processed by different neurons that share the same receptive field.

The notion that the specificity of cortical connections depends on the orientation
preference of cells is supported by physiological and anatomical data (17,18). The majority of
the evidence indicates that there are excitatory interactions between cells with similar
preferences. Further, there are claims of inhibitory interactions between cells with different

orientation preferences (19,20).
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/

Figure 12. Patterns formed from orthogonal lines. (A) A continuous pattern. (B) A discontinuous
pattern. The circles correspond to the assumed upper bound on the size of a receptive field. Within the
framework of our model, the neurons that respond to the continuous pattern are fully synchronized, while those
that respond to the discontinuous object are segmented into two populations.

The relative non-specificity of the short-range interaction assumed in our model is
supported by the relative insensitivity of the coherence of proximal neurons to their
orientational preference (2,4). However, other physiological data on orientation specificity of
connections does not reveal a clear difference between short-range and long-range connections
(17,21). Further, there are recent indications that the coherence of the oscillations of
proximal neurons, stimulated by two moving bars, is sensitive to the relative orientation of

the bars (22). This important issue deserves further experimental and theoretical study.

Activity dependence of the connections. The interaction between the phases of the
pre-synaptic and post-synaptic neurons depends on their level of activity (Eq. 5). This form
is suggestive of a fast Hebb-like modification of the strength of synaptic connections. A
possible biophysical basis for these fast changes are excitatory synaptic currents that are
mediated by N-methyl-D-aspartate {NMDA) receptors (23). Indeed, there are recent
experimental findings that suggest that NMDA receptors mediate a significant fraction of the

synaptic currents in the primary visual cortex (24).

Activity dependent couplings between phases may also emerge as a consequence of the
interactions among neuronal oscillators in which both amplitudes and phases are dynamic
variables. In such a network, the couplings between the phase of the neuronal oscillations
will depend on activity of the neurons even when the underlying synaptic interactions have a
fixed strength. This dynamic effect may, in principle, account for the required dependence of
the phase coherence on the activity of the pre- and post-synaptic cell. A preliminary analysis
of this effect was performed by considering a network of analog neurons. The neurons in
each receptive field were arranged as two populations, one that formed exclusively excitatory

connections and the other that formed exclusively inhibitory connections (25). The neurons
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in the excitatory population received an external input whose magnitude depended on the
orientation preference of the cell relative to the orientation of the stimulus, 1.e.,

I'= I(8y — 6). Such a network exhibits oscillatory output as a cooperative phenomena for an

appropriate range of parameters (25).

Two such networks, representing two clusters, were coupled via a set of weak,
excitatory connections with fixed strength. The connections were formed only between
neurons with the same orientation preference (Eq. 9). The correlation function between the
output of the two clusters, Cpps, calculated by numerical simulation, showed a strong
dependence on the orientation difference |8, — 8’| (unpublished results with E. Grannan).
This dependence was substantially greater than the relatively poor discrimination observed in
the phase model with Hebb-like connections (Eq.5) between neurons with the same
orientation preference (Eq. 9) (dashed line, Fig. 9). These results suggest that the activity-
dependent interactions between the phases of neurons may be a dynamic effect. Further, the
dependence on the activity that is induced by the dynamics appears to be highly non-linear
and may lead to strong discrimination even without feature specific, inhibitory long-range

connections.

Time-delays and phase-shifts. We have assumed that the interactions between
phases are predominantly positive and have zero time-delays. Thus the absence of phase-
shifts is expected. However, the local connections between cortical neurons are mediated by
unmyelinated axons with slow propagation speeds, ie., ~ 1mm/ms (17). It is thus
important to consider the possible effect of time delays on the synchronization of oscillations

and, in particular, on the phase-shifts between the output of different neurons.

The propagation time for distances of ~ 1 mm is ~ 1 ms, which is much smaller than
the period of the oscillations, 27 /w = 25 ms. Thus the delays are not expected to affect the
synchronization within a cluster. On the other hand, the propagation delays between
synchronized neurons that are 7 - 10 mm apart cannot be ignored. To study the effect of the
delays in the long-range connections, we have considered (18) the synchronization of two

active clusters described by phase equations with delayed interactions, i.e.,

ro¥n(t) = Towy — Jag Sin [\IIR(t)—‘PR,(t—rD)]

To\i/R:(t) = Towp — Jgw Sin [\IIR,(t)— \I/R(t—rp)] (20)

where Wy and ¥g are the average phases of the clusters at locations R and R', respectively,

7p represents the average propagation delay between pairs of neurons in the two clusters and

we have neglected noise. This model is similar to that studied by Schuster and Wagner (26).
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An analysis similar to that in ref. (26) shows that there are periodic solutions of Eq. 20
with a frequency, w # wp, that depends on the value of Jpp and 7p. The phase-shift between
the two oscillators is either 0 or . Periodic solutions with zero phase-shifts are stable if

kig
0 < 21
<1 < oo (21)

It is important to note that the bounds on 7p are in terms of the true frequency of the
system, w, and not in terms of the driving frequency, wp. For the oscillations in the visual
cortex, this result implies that the synchronization of the neurons is not disrupted for
7p < 6 ms. This bound corresponds to a propagation delay between neurons that separated

by roughly 5 mm.

The role of noise. The presence of noise plays a vital role in controlling the coherence
throughout the network. This is particularly crucial for dephasing the output of only weakly
interacting clusters. Random variation in the driving frequency of each neuron (w(r); Eq. 4)
is an additional, potential source of noise. Networks of coupled oscillators with a distribution
of driving frequencies will remain coherently active provided that the width of this
distribution is small relative to the strength of the interactions within a cluster (15), i.e.,
|6w| < 1/7s (Eq. 17). In general, the coherence between difference clusters can also be
modulated by a variation of the driving frequency with some property of the stimulus.

Systematic variation of the frequency with the velocity of visual stimuli is observed (2,5).
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